

SPECTO®

Internet/intranet application monitoring

User’s manual
& tutorial

Release 1.98

 SPECTO manual

SPECTO - 2 - NLS

 SPECTO manual

SPECTO - 3 - NLS

SPECTO

collection of manuals
(usage and tutorial)

for product release 1.98

Product information

www.nls.de#gotospecto
SPECTO@NLS.DE
+49 6321 968540

Ordering information

product key: spman198
downloading: www.nls.de/downloads/SpectoManual.pdf

 SPECTO manual

SPECTO - 4 - NLS

 SPECTO manual

SPECTO - 5 - NLS

CONTENT

Overview 12
Problem description .. 12
Idea ... 12
Implementation .. 12

Architecture ... 13
SPECTO engine ... 13
The SPECTO system ... 13
SPECTO Net .. 13
SPECTO web recorder .. 13
The SPECTO data model .. 14

Using SPECTO 16
Logging in ... 16
Initial screen .. 17
SPECTO user interface .. 20
The navigation screen ... 21
Language support .. 22
Starting and stopping of monitoring (‘chain execution’) .. 23
Object hierarchy – ‘the clients’ .. 25
The object hierarchy – ‘the current client’ .. 26
The object hierarchy – ‘chain’ ... 28
The object hierarchy – ‘URLs’ ... 34

Page specification 36
URL specification .. 36
URL parameter specification.. 36
Page status computation ... 38
Advanced settings (‘set’ command) .. 41
Follow up computation ... 44
Working with text ... 45
Page analysis ... 47
Session management ... 48
Reference measurements .. 49

Non-HTML contents ... 50
Overview .. 50
HTTP direct ... 50
HTTP Protocol Version 2 .. 51
HTTP/2 Server Push ... 51
Web Sockets .. 52
Socket / Port access ... 53
Ping .. 54
Telnet / SSH access .. 55
File access .. 56
SNMP (‘mib’) .. 57
File transfer protocol (FTP) ... 58
SQL (relational database) access .. 59
LDAP (directory) access .. 61

 SPECTO manual

SPECTO - 6 - NLS

SOAP (web services) access .. 62
WebDAV (internet file) access .. 68
Programmed checks (scripts) ... 69
Applets ... 70
PDF documents ... 72
Flash ... 72
Scalable Vector Graphics (SVG) .. 72

Advanced Topics ... 73
Proxy coverage ... 73
Secure communication .. 75
Multiple network interfaces .. 78
‘Clustered’ storage .. 79
SAP R/3 URLs ... 80
Message services ... 81
Email fetch .. 83
Ramp mode ... 84

Reporting 85
Built in reporting ... 85
Generation of reporting documents .. 91
User reporting .. 92
Master console ... 93
Client console ... 94
Desktop .. 95
Portal .. 96

Service level agreements ... 97
Overview .. 97
Definition of a service level agreement : .. 98
Working with service level agreements : ... 99
Introduction by example to service level agreements .. 108

SPECTO script ... 112
Overview .. 112
Syntax .. 112
Tracing .. 112
Control structures ... 112
Available commands .. 114
Script objects .. 116
Example 1 (overview) .. 120
Example 2 (language features) ... 121
Example 3 (XML) .. 122
Example 4 (notification) .. 122

JavaScript ... 123
Overview .. 123
Selection of scripting engine ... 123
Syntax of JavaScript .. 123
Returning results .. 123
Using the SPECTO object hierarchy ... 123
Available SPECTO objects .. 124

 SPECTO manual

SPECTO - 7 - NLS

Example 1 (accessing SPECTO objects: chain/url hierarchy) .. 131
Example 2 (accessing SPECTO objects: execution) ... 131
Example 3 (accessing SPECTO objects: others) ... 131
Example 4 (documents) ... 132
Example 5 (reflection of SPECTO objects) ... 132
Example 6 (formatting output) .. 133
Example 7 (console plug-in) ... 133
Example 8 (Low level system access) .. 134
Example 9 (Session persistence) ... 134
Example 10 (class/instance references) ... 135
Example 11 (Working with JSON formatted data: Parser) .. 135
Example 12 (Codings: BASE64, Deflate, Zip) ... 136
Example 13 (Working with OS files) ... 137
Example 14 (Sending emails) .. 137
Example 15 (Creation and Distribution of reports with attached PDF) ... 138

Business-to-business (‘b2b’) .. 142
Overview .. 142
Usage .. 142
Details .. 143
E-mail server ... 147
XML server .. 147
SOAP server ... 148
Port/socket services and port/socket server ... 149
SNMP trap server ... 149

Advanced B2B features ... 150
WSDL (‘web services description language’) ... 150
UDDI (‘universal description, discovery and integration’) ... 150

Notification..... 152
Available types of notifications : ... 153
Email notification .. 153
FAX notification .. 153
SMS notification ... 153
Telephone notification ... 153
Native command notification .. 154
Java class notification ... 154
SNMP notification .. 154
SOAP notification .. 155
SAP R/3 notification ... 155
HP OpenView/VantagePoint integration ... 156
SAP R/3 CCMS integration ... 156
Forwarding of notifications / NLS notification services .. 159

User management ... 161
Standard ... 161
Enhanced .. 161

Engine management ... 163
Health check ... 163
Statistics .. 163

 SPECTO manual

SPECTO - 8 - NLS

Monitor ... 163
Working with files ... 164

Database management ... 165
Database connections and recovery .. 165
Delayed write ... 165
Attribute cache .. 165
Document cache ... 165

Operator messages ... 165

‘am alive’ messages ... 166

Time base / NTP 166

Limits ... 166

Auto export .. 166

SPECTO execution extensions ... 167
Customer exits ... 167
SAP R/3 command line interface (CLI) ... 169
Remote execution sample code ... 169
Batch execution .. 170
Background execution .. 171

SPECTO NET 172
Overview .. 172
Architecture ... 172
Configuration ... 172
Operation .. 173
Sample configuration .. 174

SPECTO Customizing 175
Attributes .. 175
Graphical User Interface .. 176

Commands in detail . 177
General ... 177
Navigation .. 177
Object hierarchy ... 177
Create a new client ... 178
Configure the client... 178
Configure a chain ... 178
Configure a web page ... 178
Copying items .. 179
Start/Stop processing a chain ... 179
Reporting ... 179
Analyzing or check a web page or whole chain .. 181
Attributes .. 181
Variables .. 181
User defined command ... 182
User management .. 182
Notifications .. 182

 SPECTO manual

SPECTO - 9 - NLS

Import / Export ... 182
Other commands .. 183

web recorder I .. 184
Overview .. 184
Usage .. 184
Documentation .. 184

SPECTO ‘Interceptor’ web recorder ... 185
Overview .. 185
Usage .. 185

Installation..... 186
Configuration of the IP address : .. 186
Configuration of the Java keystore : .. 186

Databases.... 187
ORACLE ... 187
Microsoft SQL Server ... 188
Sybase Advanced Server ... 189
MySQL .. 189
SAP DB / MAX DB .. 190
Hypersonic ... 190
Cloudscape... 192

Running SPECTO 195
Running the database ... 195
Starting the external (‘tomcat’) web server / servlet container ... 195
Starting SPECTO .. 195
Stopping/restarting SPECTO .. 198
High availability operation (mode I : ‘shared hardware’) ... 199
High availability operation (mode II : ‘shared database’) .. 199
High availability operation (mode III : ‘unshared’) ... 199
Release upgrade in a HA environment ... 200
Stopping the web server... 201
Stopping the database... 201
Advanced topics ... 202

Attributes summary203

Troubleshooting208
Problems connecting to SPECTO .. 208
Problems during SPECTO execution .. 208
Incorrect/strange behavior .. 209

Known problems 210
timeout .. 210
database inconsistency ... 210
application dump ... 210

Tutorial .. 211
Overview .. 211
A simple homepage monitor (tutorial 0) ... 212
Monitoring a sequence of pages (tutorials 1 to 3) ... 213

 SPECTO manual

SPECTO - 10 - NLS

Pages containing applets (tutorials 4 and 5) .. 215
Pages using secure communication (tutorials 6 and 7) .. 215
Monitoring a b2b site (tutorials 8 and 9) ... 215
Monitoring from different regions .. 215

INDEX 217

 SPECTO manual

SPECTO - 11 - NLS

Overview SPECTO manual

SPECTO - 12 - NLS

Overview

Problem description

Companies are beginning to use the internet for their business. Common areas like
advertising, product information, sales and service are enhanced with internet solutions. In
some areas they even begin to replace the traditional concepts.
At the same time, companies more and more rely on services delivered via the internet or
intranet for their own internal operation.

Above services are based on relative new and in some cases complex technologies. In those
interconnected environments even malfunctions in minor components can decrease the
availability or quality of the service.

Though it is possible, and already done in many cases, to monitor all components used in
an e-commerce solution, this is not sufficient to guarantee the functionality from an user’s
point of view.

Idea

Only a continuous end-to-end monitoring, which accesses the whole implementation from
the user to the last involved system can allows fast detection of problems and provide hints
to emerging failures.

Implementation

SPECTO behaves like a real user would. It constantly processes predefined transactions on
the web applications to monitor and, based on the evaluated results, takes actions like
informing support organizations and signaling system management applications.

Also SPECTO’s summarizing reports allow retrospection of the monitored applications
behavior to detect upcoming problems.

Internet connection / performance of your
business partner is inadequate

Your erp-systems are offline

Connection between electronic commerce-
solution and erp-system is broken

Your firewall is malfunction

The internet connection is broken or
performance degraded

Internet provide does not
conform to the specification

An overloaded segment of the internet is
used

Final or b2b
user

Final or b2b
user

‘firewall’‘firewall’ Ec solutionEc solution

Internet

Internet service
provider

Internet service
provider

‘firewall’‘firewall’ ERP systemERP system

Your system infrastructureYour business partners infrastructure

Internet service
provider

Internet service
provider

 SPECTO manual Architecture

SPECTO - 13 - NLS

Architecture

SPECTO engine

Is a highly focused monitor for web based transactions using html (user based web) or
XML (b2b based web) transactions.
SPECTO can be used in-house and over the internet; for details about SPECTO scenarios
see ‘www.nls.de#gotospecto’.

This manual describes the usage and installation of SPECTO; it also includes a tutorial to
ease becoming familiar with SPECTO configuration and operation.

The SPECTO system

A SPECTO system consists of :

• An active SPECTO instance
• One or multiple backup SPECTO instances
• The SPECTO web server
• The SPECTO (relational) database

From the operating system the following services are required (SPECTO base system) :

• TCP/IP protocol
• SMTP protocol and SMTP Server name

SPECTO Net

Multiple SPECTO instances can be tied together forming a SPECTO net. All SPECTO
instance of a SPECTO net share the same data (configuration and results).

Multiple SPECTO nets can coexist without interference.

All communication between the SPECTO instances of a SPECTO net is based on the
SMTP (email) protocol and is therefore guaranteed to work across firewalls.

All data communication is formatted in XML.

SPECTO web recorder

The web recorder is a client software for windows PCs to record user sessions with the
Microsoft Internet Explorer, prepare the recorded information and sent it to the SPECTO
engine for advanced editing and playback.

Architecture SPECTO manual

SPECTO - 14 - NLS

The SPECTO data model

SPECTO ‘clients’

A SPECTO instance provides an unlimited number of independent ‘clients’. For any client
exactly one account (userid / password) is maintained and checked against during login; the
authorization is restricted to the assigned client; it is not possible to change or view
information of other clients in the SPECTO instance.
Aside this client-tied accounts there is one instance-wide (super-user) account which may
switch between the different clients without login in again. Also, this super-user has access
to the system-wide configuration parameters and commands.

SPECTO ‘chains’

‘URL’ or ‘web page’ are standard internet acronyms, SPECTO additionally uses the ‘chain’
keyword. A chain describes a ‘session’ which consists of a set of URLs which will be
performed in a given sequence and share a common environment (like a user-login).
The ‘session’ concept is not part of the www specification. Web application designer
invented this to allow the implementation of applications like those in a classical edp
environment.

Start of a chain

From a user’s view a chain would always begin with an informational page (because the
URL is called without parameters) which will show the initial page; and be followed with a
series of transactional pages. SPECTO can ignore the initial informational page (because
the URL of the first transactional page and all its parameters are known).

Next page of a chain

SPECTO has two ways to select the next URL of a chain :
• ‘hard wired’ : The URL is specified in the URL definition. However, through the

content evaluation, which of the defined URLs of a chain will be used as next URL may
be variable. See chapter ‘FollowUp computation’ for details.

• ‘dynamic’ : If in the URL definition no URL string is specified, SPECTO accepts the
‘current’ URL (which is the URL sent by the web browser in response to the previous
transactional URL).

SPECTO supports all known technologies to implement sessions (see ‘session
management’ for details).

SPECTO ‘URLs’

The web provides ‘informational’ and ‘transactional’ pages. ‘Informational’ pages don’t
provide any user interaction, they just display information and, usually, allow the user, via
links to switch to another page. ‘Transactional pages’ provide for some kind of user

 SPECTO manual Architecture

SPECTO - 15 - NLS

interaction (usually via input fields and buttons); ‘transactional pages’ require server-side
processing and are the basis of web-based (‘e-commerce’) applications.
In SPECTO, any URL definition with parameters is considered an ‘transactional’ page and
any URL without defined parameters is considered an ‘informational’ page.

A SPECTO URL specifies a web page and consists of :
• an address (‘uniform resource locator’, URL); e.g. ‘www.nls.de’
• a set of input parameters. They define the input a user would normally enter into the

page.
• a set of content tags which are checked against the output of the web page. The

evaluation of the different tags can be combined logically to compute the page ‘result’
and the ‘follow up page’.

• a set of technical attributes used by SPECTO to process the page. E.g. the ‘timeout’
parameter which may override the chains ‘timeout’ setting.

To ease setting up a URL configuration SPECTO provides a mechanism (see ‘page
analysis’ for details) to analyze web pages in order to find out about parameters and
configurations used in the web pages construction.

Using SPECTO SPECTO manual

SPECTO - 16 - NLS

Using SPECTO

Logging in

Start page of SPECTO’s web server is the login page. This page may be accessed using
‚http.//xxx.xxx.xxx.xxx’ URL in the browser with ‘xxx.xxx.xxx.xxx’ being the IP address
which has been assigned to the SPECTO instance. (For demonstration use ‘www.nls.de’,
then ‘customer area’ / ‘Kundenbereich’).

In the login page, the company’s name is used as user id which is identical to the initial
password. The service name is ‘Specto’.

Select the ‘Logon’ button to log on. Once logged on, the password may be changed using
the ‘pw <newpassword> <newpassword>’ command. Note that the password is stored
unencrypted and so is visible for the SPECTO administrator.

Notes:

1. The same panel is used to access the NLS online support database; just replace the
service name ‘Specto’ with ‘support’. Your userid/password is also valid for the
support application.

2. In custom installations the ‘Service:’ field is not available; the service will default to
‘SPECTO’.

3. The URL ‘http://machine-name/servlet/SpectoHome’ may be used to log on to
SPECTO in a separate browser (without having the left hand side NLS/SPECTO’
frame).

4. Multiple instances are accessed by adding the port number to the service name (see
‘Execution and Termination’, ‘Advanced topics’).

 SPECTO manual Using SPECTO

SPECTO - 17 - NLS

Initial screen

In most environments (recent browser, scripting enabled) usage of the (default) advanced
layout as described here is recommended. Other, less demanding layouts may be also
selected (see next chapter).

Advanced layout

This layout consists of the following sub screens :

 Title area
 Navigation menu (on the left side, with command buttons on top)
 Main screen
 Command area (on the bottom)

Each of the sub screens can be scrolled, sized and printed individually, and are refreshed
independent from each other by the SPECTO engine. Pressing the ‘refr.’ (refresh) button
in the command area forces a repaint of all sub screens.

Navigation menu

In the navigation menu individual branches can be open or closed; the open/close status is
preserved over logoff times (stored in a cookie). The buttons above the navigation area allow
the minimizing and maximizing of the navigation tree or to apply the standard configuration.

All navigation menu entries are resolved to commands of the SPECTO engine (and therefore
appear in the log and the history list). For commands with parameters a selection screen for the
parameters will be displayed before the command is executed (this is indicated by three dots
(…) after the menu entry). The set of commands displayed in the navigation menu is
dependent of the rights (see chapter ‘user management) of the actual logged on user.

Using SPECTO SPECTO manual

SPECTO - 18 - NLS

Main area

The content of the main screen at logon time (initial executed command) can be changed
by setting the ‘FirstCommand’ or ‘First_<user>’ attribute. System default is the ‘logo’
command, but ‘el’, the root of the object hierarchy (as shown above), or ‘lc’ for the client
selection screen, are recommendable alternatives.

The main screen is titled by a header line displaying the current screen title, a ‘back’ link for
re-executing the last command, a ‘history’ link for a list of the most latest executed
commands, and the ‘home’ link to return to the first page. Also available are links to the
net/node/client hierarchy.
Below the navigation screen, the footer line displays the user command links, the command
line field, and links to the SPECTO home directory on the web and the NLS support
application.

Command area

The user commands are user definable links to SPECTO commands; they can be
maintained using the ‘uc’ user commands console, or directly via the ‘ua’, ‘ud’ and ‘ul’
commands.

The ‘Command’ field is used to directly enter SPECTO commands (see chapter
‘commands’. If, directly after the logon, the ‘Execute’ button is clicked, or the ‘enter’ key is
pressed, SPECTO will display a summary of the most important commands. At other
times, executing with an empty action field will repeat the last command issued.

A list of the most recent executed commands is available using the ‘history’ link in the
command line or the ‘hi’ command. The commands displayed there can be re-executed,
copied into the command line (for editing before re-execution) or saved as a user defined
command.

Normal operation of SPECTO will seldom require the usage of the command line; relevant
activities may be selected graphically and often used commands can be individually tied to
links.

If a command is entered with an
incorrect set of parameters a message
and a short help is displayed.
Also the menu is searched for
matching entries. Such entries are
presented in a list for direct execution
(see example at the right).

Screen refresh

Usually only those screen areas relevant for a command are redrawn. The ‘refr.’
(refresh) button forces a redraw of alls sub screens (frames).

 SPECTO manual Using SPECTO

SPECTO - 19 - NLS

Alternate layouts

For limited environments (physical screen size, browser capabilities, etc.) a set of alternate
screen layouts is available. :

Switching to one of the alternate user interface is accomplished by entering the ‘gui’
command and then selecting an appropriate layout from the resulting menu (The standard
screen, as featured in the chapter before, corresponds to the entry ‘graphical multi frame
GUI’) :

Basic layout

The most basic layout shown above is optimized to work with physical screen resolutions
of 800 vs. 600 pixels and browsers without frames, java script and cookies.

The navigation tree as shown in the picture above and located in the left frame of the
‘multiframe GUI’, is displayed by command ‘na’.

Note that the basic layout may not be supported in coming releases of the SPECTO
engine!

Using SPECTO SPECTO manual

SPECTO - 20 - NLS

SPECTO user interface

Though the SPECTO engine is command driven it provides a web browser based graphical
user interface.

The header block

The header line shows :
• the current screen title. Also outstanding operator messages are displayed in the right

corner of this area.
• a ‘back’ link for re-execution of the last command
• a ‘history’ link for a list of all recent commands
• the ‘home’ link, a click here displays the SPECTO start screen, usually the root of the

object hierarchy.
• some status information, at the moment if the instance is a development configuration

and the error status of the engine
• links to the ‘net / node / client’ hierarchy.

The footer block

The footer line displays the

• user definable command links (see paragraph ‘User defined commands’ in section

‘Commands in detail’),
• the command line entry field, and
• links to the SPECTO web home and NLS support.

The command line allows the direct entering of commandos to the SPECTO engine (see
section ‘Commands in detail’). A command is submitted by pressing the ‘Execute’ button;
if the button is pressed with an empty command line, the last command will be executed
again.

 SPECTO manual Using SPECTO

SPECTO - 21 - NLS

The navigation screen

Though SPECTO can be used entirely by commands it is advised to use the graphical
‘navigation’ interface. The navigation’ screen can be called from any other screen by issuing
the ‘na’ command; also (if not configured different) it is the screen called when following
the ‘home’ link of the header line.

The navigation screen displays the SPECTO functionally in a
tree view which can be expanded and collapsed by clicking
the ‘arrow’ links left of the inner nodes.

The displayed functionality can be started by a click on the
function’s name. Functions with a highlighted background (as
‘table dynamic and ‘graphic dynamic’ in the example) will
display a dynamic parameters screen before the function
execution :

.

Basic layout :

Using the basic layout the behavior of the navigation screen can be switched to always
displaying only the necessary nodes (preserving vertical screen space) by selecting the
‘expand only active branch’ option (the refresh key must be used to refresh the display after
switching the behavior).

The navigation screen does only display the nodes to which the current logged on user has
the right to execute them; therefore it may look different from user to user.

Using SPECTO SPECTO manual

SPECTO - 22 - NLS

Language support

The SPECTO systems primary user interface language is English. Since release 1.90 a
limited support for German and French user interface language has been inserted.

The language can be selected using the ‘lang’ command.

 SPECTO manual Using SPECTO

SPECTO - 23 - NLS

Starting and stopping of monitoring (‘chain execution’)

SPECTO’s basic execution unit is the ‘chain’ of sequentially executed web or b2b pages.
Any chain may be ‘not executing’, ‘executing in one thread’ or ‘executing in multiple
threads’.

Manual start

Chains are usually started (and stopped) using the ‘run’ / ‘stop’
links of the chain list (‘client configuration screen’, reached via
the ‘el’ command or the ‘object hierarchy’ link in the navigation
frame) or the equivalent entry in the drop down box of the
‘action’ column.
A chain may also be started or stopped using the ‘start’ button
in the chain configuration screen (this screen is reached by
selecting a chain in the above client configuration screen.

A chain may be started in several instances; the stop command stops all instances.
For debugging a chain may be executed for exactly one run (action ‘one run’).

On command level, any chain may also be started using the ‘sc <chain-id>’
command. The chain’s processing will be submitted to a separate process with a name of
‘thread<nnn>’. Any process can be stopped using the ‘kt <thread-name>‘, ‘ktf
<thread-name>’ (‘force’), ‘kti <chain-name>’, ‘kta true [<nice>]’
(all chains, ‘nice’ is true : wait until stop of chain execution) or ‘kp <thread-name>’
(‘hard core stop’) commands. Processes can be stopped and restarted without loss of elder
measurement data.

The chain execution period can be dynamic using ‘ramp mode’, see chapter ‘ramp mode’
for details.

The ‘lt’ (‘list threads’) command can be used to inspect the running threads.

Notifications resulting from errors in the monitored object can be deleted by using the ‘no
notif’ entry or the ‘no d…’ command set. Note that existing notifications are NOT deleted
by a chain stop command!

Automatic start

By default no threads will be started automatically at SPECTO launch.

Any configuration of currently running thread may be set as startup configuration using the
‘st save’ command. The ‘st list’ command displays the list of currently defined
start up threads; ‘st delall’ deletes all startup entries; and ‘st start’ starts all
defined threads.

Using SPECTO SPECTO manual

SPECTO - 24 - NLS

Operations at Runtime

A list of currently running chains (‘threads’) is available via menu ‘threads’ – ‘list running
threads’ (command ‘lt’) :

The status column identifies the current step (chain/url) of the running thread.
The ‘lt p’ variant of the ‘lt’ command list all currently running processes (for all clients and
the SPECTO’s engine internal processes).

During a chain is running the current/least status and results can be inspected by following
the ‘proc…’ link in the threads list, or the ‘runs:‘ link in the chain screen:

The monitor (command ‘mo l’) may be used to get information about failures of running
threads :

 SPECTO manual Using SPECTO

SPECTO - 25 - NLS

Object hierarchy – ‘the clients’

Within any SPECTO instance, data is divided into independent ‘clients’. Any operation
(with exception of some ‘cross-client’ actions) happens only within the scope of the current
client.

The administrative user can view/select clients using the ‘select client’ entry of the
navigation screen or by issuing the ‘lc’ command:

The client list shows the define clients name, primary user name, the number of defined
chains, the list of deployed to SPECTO instances (if this instance is a deployment in
stance), whether this client is part of a SPECTONET configuration and whether the client
is enabled for development.

The ‘sm <clientid>’ command can be used to switch directly between clients.

More technical information about the clients status can be obtained by the ‘lock’
command :

Client maintenance is available under menu ‘maintenance – clients’. It is possible
to create new clients, rename clients and to delete clients.

SPECTO clients are not the root of the SPECTO object hierarchy. SPECTONet is
available to connect multiple SPECTO engines to a network appearing as one large,
distributed SPECTO entity. The SPECTO engines within a SPECTONet are called ‘nodes’
in the object hierarchy.

Using SPECTO SPECTO manual

SPECTO - 26 - NLS

The object hierarchy – ‘the current client’

At logon the actual client for the user is determined according to the user configuration.
The ‘client definition’ screen shown below is the entry point of the object hierarchy
(reached by selection ‘object hierarchy’ from the navigation screen or entering the ‘el’
command on the command line) and displays all configured chains of the current client.

The ‘client definition’ screen consists of the areas :
• Client name, links to its documentation (‘doc’) and to deploy the client via SPECTONet

(‘Deploy’, only visible if the SPECTO engine has deployment enabled)
• Editable fields of the individual chains :

o Links to the chain configuration screens
o Chain name
o Execution period (in seconds)
o The ‘actions’ drop down box
o Quick start/stop
o the chain execution status
o Link to the reporting data for the chain; also showing the last timestamp (or

date if no results of today are available) of a measurement. The ‘ov’ link
selects an overview of all measurements of the last fourteen days.

• Execution and scrolling buttons: ‘Execute’ to execute an action selected in the ‘action’
column (do not disturb this button with the ‘Execute’ button of the command area!);
and, there appropriate, buttons to scroll on a page-wise to the list of chains.

The ‘docu’ link switches to the
documentation screen.
Documentation can be maintained
for every level of the SPECTO
object hierarchy.
It is also used by PDF based
reporting and SLA generation.

 SPECTO manual Using SPECTO

SPECTO - 27 - NLS

Editable fields of the chains

The name of the chain, the period of executions (in seconds) and the default type (which
may be overwritten in the chain definition screen) can be changed by editing the values in
the this text fields.
The ‘action’ column provides shortcuts to selected commands for the chain.
Changes in these fields only become active when they are committed using the ‘Execute’
button.
Chain entries may be repositioned on the screen using ‘drag & drop’ (browser dependent).

Links to the chain configuration screens

The links in the ‘Id’ column switch to the according chain definition screen.

Chain execution status

This column displays if a chain is running and in how many instances. If notifications are
active, their number is displayed as the second number within the parenthesis. Warning or
error status of a running chain is represented as yellow or red coloring of the status text.

Link to the reporting data for the chain

Selecting the ‘ov’ link will switch to the ‘reporting overview’ screen of the chain and
display the results summary of the last two weeks of operation. The link left to the ‘ov’ link
shows and links to the last date for which reporting data is available.

Scrolling buttons

Larger lists of chains may be separated into pages (see page size command. If this is
enabled page scroll buttons will appear below the listed chains. Using the ‘el
<chainid>’ variant of the ‘el’ command, it is possible to navigate to a certain area of
the chain list without using the scroll buttons.

Saving data

Any change in a text field must be committed using the ‘Execute’ button before it will be
saved to the database. Failing to do so, e.g. following a link or using the browsers ‘back’
button will discard all entries made in the screen.

Using SPECTO SPECTO manual

SPECTO - 28 - NLS

The object hierarchy – ‘chain’

Any chain exists of a number of URLs (web processing) or XMLs (b2b processing). For
any such entry two time parameters (timeout and ‘too long’ warning) can be configured.
For every chain a number of notifications (see chapter ‘notifications’) can be configured.

The ‘chain configuration’ page is used to specify one chain of a client. It consists of the
areas :
• Object hierarchy navigation (allows fast access to the higher level client)
• Option flags
• List of URLs / pages
• List of notifications
• List of off-times
• Buttons

Editing is done by changing the values in the fields and pressing the ‘Execute’ button
directly below. Actions are performed by selecting the action in the ‘action’ field and
pressing the same ‘Execute’ button. Only one action (but multiple changes are allowed for
one button execution.

(This screen was generated using the ‘ec 1’ command, alternatively by following the ‘chain
1’ link in the client configuration screen.)

Area ‘option flags’ :

 ‘Persistent’ Data (e.g. variables and applet instances) of a run of the chain will be

preserved to the next run.
‘use PBC’ the ‘process before chain’ script will be executed before every execution of

the chain.
‘use PAC’ the ‘process after chain’ script will be executed after every execution of the

chain.

 SPECTO manual Using SPECTO

SPECTO - 29 - NLS

Area ‘URLs / pages’ :

For any URL the URN (the address) and the default timeout and time-warning (‘2long’)
have to be entered. Also the name of a session id parameter identifying the session of the
URL sequence can be entered (‘cookies’ are handled automatically). Those parameters
values (multiple may be separated using a ‘;’) will be learned in the first page of the chain
which has them specified and will be applied to the consecutive pages.

URLs can be edited in detail (parameters and content) by following the link ‘Page_x’; new
URLs can be inserted using the ‘add’ action or deleted using the ‘delete’ action. Any URL
can be analyzed (‘analyze’ action; same as the ‘pa’ command; for details refer to the
‘commands in detail’ section) or executed once (‘test’ action).

URL entries may be repositioned on the screen using ‘drag & drop’ (browser dependent).

Commands :

Instead of URLs also commands can be used; in this case the type field has to be set to
‘command’. The following commands area available :

Command description Example
Gosub
<target>

continue at the specified
location and prepare to return

gosub Home:0

Goto
<target>

continue at the specified
location

Goto
Home:StartPage

Repeat repeat the current URL Repeat
Return return to the location from

where this chain was called
Return

Break Stop the chain processing of
this run

Break

Quit Stop the chain processing
complete.

Quit

See chapter ‘Page specification’ / ‘follow up computation’ for a description of the location
specification.

Comments :

Any URL entry (even commands) can be appended with a comment; comments are
identified by a leading ‘ //’ (note the space).

Example : localhost/index.html // main page

Area ‘notifications’ :

In case of problems during the chain execution notifications are generated. Notifications
can be edited, added and deleted. Any notification can be supplied with an optional

Using SPECTO SPECTO manual

SPECTO - 30 - NLS

message, this message may contain variables. Variables may also be used to specify the
notification address itself.

In order for the different types to work correctly some prerequisites may be required; see
chapter ‘notification’.

Notifications may be specified in more detail by following the ‘Id…’ links in the chain
configuration screen :

Here, a notification may be tied to specific error types, be completely disabled (without
changing any of the other parameters), and a ‘process before notification’ (‘pbn’) script may
be specified.

According to the specified ’Level’ parameter, the maximum level and the ‘on’ and ‘off’
thresholds are displayed.

Using the ‘Test’ button a notification may be submitted immediately without having an
appropriate error condition.

Notification entries may be repositioned on the screen using ‘drag & drop’ (browser
dependent).

Area ‘off-times’ :

The processing of a chain happens per default always with the specified period. In the ‘off
times’ section of the ‘chain configuration’ page, time periods in which no processing will
occur can be specified (edited, added deleted).
Note: the ‘reason’ field is for comments only and is not processed.

Off times may be defined on a daily, weekly or monthly base. The days within a week are
specified from sunday (1) to Saturday (7), the days within a month are specified from ‘1’ to
the number of the last day of the month.

 SPECTO manual Using SPECTO

SPECTO - 31 - NLS

If for daily off-times the begin time is specified to a value after the end time (as you can see
in the second entry of below example) the resulting off time is from the beginning of the
day to the end time and from the begin time to the end of day.

Off-time entries may be repositioned on the screen using ‘drag & drop’ (browser
dependent).

Following the ‘not during’ link, an off-time entry can be specified in more detail (see the
example below). Especially it is possible to specify the begin- and end times on a minute
base, and the selection of days within a week is more comfortable.

Using the ‘previous’ and ‘next’ buttons it is possible to scroll through the off time entries.

The ‘check’ link in the left/top cell of the off-times section it is available to generate a
graphical representation of off-times for a selectable time period :

Area ‘Buttons’ :

The ‘Execute’ button saves the changed values and/or performs the action chosen in an
action field.
Other Buttons allow the scrolling to previous and next chains and the ‘one time’ execution
of the chain.

Using SPECTO SPECTO manual

SPECTO - 32 - NLS

‘One run’ execution :

For debugging purposes it is possible to execute only one run of the defined chain.
Additional information will be gathered and made available after the processing has
finished. ‘One run’ execution can also be initiated from several other places at SPECTO.

After starting a ‘one run’ execution the ‘one run’ screen is displayed. In this screen
processed URLs are shown together with the major measurement results. This is screen is
automatically refreshed.

During or after a ‘one run’ , the messages, variables, results screen content and result
screen view can be displayed for any step. The display of that data is always in a separate
browser window; from which multiple can be opened (they have to be closed manually).

Note that following one of the ‘chain’, ‘URL’ or ‘status’ links will terminate the refreshing
of the status screen but will not terminate the ‘oen run’ processing. The status screen may
be reactivated using the ‘pc w’ command from the command line.

Display of messages:

The message window is used to display all messages, including all HTTP parameters and
script-outputs of the processed URL.

This separate window has to be closed manually when it is not used any more.

 SPECTO manual Using SPECTO

SPECTO - 33 - NLS

Display of variables:

Controlling ‘one run’ execution

With the link selection in the block on the left side of the ‘one run’ execution screen it is
possible to check and stop the ‘one run’ execution. Also it is possible to get an index to the
complete results , view the complete result (with or without the retrieved html sources).

‘Single step’ execution:

A variant of the ‘one run’
execution explained in above
is ‘single step’ execution.
During ‘single step’,
execution stops after each
URL and waits for user
interaction.

‘Single step’ execution will be
integrated into ‘one run’ in a
later release.

Using SPECTO SPECTO manual

SPECTO - 34 - NLS

The object hierarchy – ‘URLs’

The ‘URL configuration’ page is used to specify one URL of a chain. It consists of the
areas :
• Object hierarchy navigation
• Option flags
• Attributes
• Parameters
• Content
• Buttons

Editing is done by changing the values in the fields and pressing the ‘Execute’ button
directly below. Actions are performed by selecting the action in the ‘action’ field and
pressing the same ‘Execute’ button. Only one action (but multiple changes are allowed for
one button execution.

(This screen was generated using the ‘eu 14 2’ command, or by following the ‘Page 2’ link in the chain config. screen)

Area ‘option flags’ :

‘Post’ Using HTTP ‘POST’ instead of ‘GET’
‘no redir’ Do not use automatic redirection
‘dyn. Redir’ Automatic redirection will be performed by SPECTO (must be used

together with ‘no redir’).
‘binary content’ the content will not be analyzed as text.
‘Abortable’ Allow aborting by monitor..
‘Use VIA’ Do not execute this URL but forward it to a SPECTO ‘VIA’ instance.
‘Hide in rep.’ Do not show this URL in reporting.
‘not for SLA’ Ignore this URL for SLA (‘service level agreement’) processing.
‘Force…’ Specifies required HTTP protocol levels
‘Render’ Perform an HTML rendering (to measure render time).
‘par order’ perform automatic parameter ordering based on the preceding page.
‘use PBU’ the ‘process before URL’ script will be executed before every execution of

the URL.
‘use PAU’ the ‘process after URL’ script will be executed after every execution of the

URL.

 SPECTO manual Using SPECTO

SPECTO - 35 - NLS

Area ‘Attributes’

The ‘delay to next URL’ field accepts a wait time (in milliseconds) before the execution of
the next URL. If not entered or entered as ‘0’ a default of 5000 milliseconds will be used.

A symbolic name can be entered in the ‘Symbolic name’; this can be used as reference
instead of the URL sequence number.

Areas ‘Parameters’ and ‘Content’

In the URL configuration any number of parameters (which will go into the ‘params’
section of the requesting URL) can be specified. If a session id is specified in the
corresponding chain configuration, this will be included automatically.

Also any number of content tags can be specified and computed to form a result and
(optionally) a follow up page.

See chapter ‘Page specification’ for details.

Area ‘Buttons’

The ‘Execute’ button saves the changed values and/or performs the action chosen in an
action field.
‘Page analysis’ retrieves the URL and analyzes the content.
‘Page test’ calls the page with the specified parameters and applies the content check.
‘one run’ starts a ‘one run’ processing of the corresponding chain.

Page specification SPECTO manual

SPECTO - 36 - NLS

Page specification

URL specification

URLs are specified according to the syntax of the W3C.

The ‘type’ field is only used if the URL does not specify the type by itself. In that case, if
the type field is ‘default’ the type of the chain is used.

SPECTO variables can be used in URLs, there they have to be framed with ‘@’ characters
(as in …@clusterid@.. in the example below).

Example :

note: It may be necessary to experiment with omitting or specifying the leading ‘http://’

and a trailing ‘/’.

URL parameter specification

Any web page which allows for user input (graphical elements like buttons, checkboxes and
input fields) communicates with the web server thru the use of parameters. Any parameter
has a name and an associated value.
SPECTO allows for the definition of fixed and variable parameters. The parameters are
supplied to the target page in the order they are specified; this may be important for pages
consisting of multiple forms.
A parameter may refer to a specific form within a page using the colon format :
<form>:<parameter>.

Fixed parameters

If a parameter is defined with type ‘direct’ its value is the text entered in the ‘value’ column.

In the above example the URL is supplied with the parameter ‘parFix’ which has the value
‘FixValueOne’.

 SPECTO manual Page specification

SPECTO - 37 - NLS

Dynamic parameters

Parameter values (and the names) can be computed dynamically by the use of variables.
Variables can be used in parameters if the parameter type ‘variable’ is specified.

In the simplest case the ‘value’ part is taken as the variable’s name and will be substituted at
runtime with the variable’s value (example: Id 1).

If the parameter value consists of fix and variable (even multiple) parts, the variable
name(s) have to be enclosed in ‘%%’ tags. (example: Id 2; if the value of variable ‘VarX’ is
‘iable’ then the parameter ‘parVarTwo’ is submitted with the value ‘VariableValue’ to the
URL.

Variables can also be used to specify the parameter names (example: Id 3; here, if the value
of variable ‘varA’ is ‘ameter’, a parameter ‘parParameterVariable’ with the value ‘FixValue’
is submitted to the URL.)
Variables can be used in parameters names and parameter values at the same time
(example: Id 4).

Normally variables are local to the chain. If a variable is preceeded with an underscore ‘_’ it
is considered global within the client and commands ‘vw’, ‘vr’ and ‘vl’ can be used to set
and read it.

The following variables are (among others) supplied SPECTO automatically :

• ‘currURL’ address of the current URL
• ‘resultSize’ number of characters in the result page
• ‘resultPage’ the content of the result page

For web pages using the HTTP authorization mechanism (‘WWW-Authenticate’ header)
the special parameter types ‘username’ and ‘password’ are available. (examples: Id. 5 and Id.
6).

External parameter computation

Parameter values can be computed by an external routine written in the Java programming
language and called by SPECTO’s ‘exit’ mechanism (see also chapter ‘exits’). The syntax for
an ‘exit’ type parameter is a set of three subparts divided by colons :
‘class:method:parameter’, the subparts may also be or include variables. (See also the next
chapter for a description of ‘exit’ programming).

Page specification SPECTO manual

SPECTO - 38 - NLS

Special parameter formats

Besides the typical parameter formats like ‘text/html’ or ‘application/x-www-form-
urlencoded’ which are supplied automatically, special formats can be selected using the
‘contentType’ property. (see also section ‘Advanced settings’).
The following content types are supported :
‘multipart/form-data boundary=--xxx’

all parameters will be enclosed with the specified boundary and the parameter name is
transmitted as a ‘name=”<parameter name>”’ construct.

Parameter ordering

Parameters are supplied to the URL in the order as they are defined in the URL
configuration page. If the flag ‘par order’ id set in the URL configuration screen SPECTO
tries to compute the parameter order from the last page accessed. (‘automatic parameter
ordering’).

Parameters not found in this process are moved to the end (by preserving their original
order).

Any parameter can be excluded from this processing by preceding the parameter name
with ‘noorder:’.

If automatic parameter ordering is necessary only for a small subset of the specified
parameters, this parameters can be scheduled for automatic ordering by preceding them
with ‘toorder:’. In this case the flag ‘par order’ must not be selected.

Page status computation

The status of a processed URL or XML request is dependent of the content of the received
page/xml-object. To compute the page status an arbitrary number of content specifying
tags (‘content tags’) can be specified, and, by the use of ‘meta tags’, can be computed using
logical ‘and’, ‘or’ and ‘not’ operators.

Content check

Any content tag of type ‘value’ is considered a text string; its value is true if the text can be
found in the web page. This comparison is case-insensitive.

Logic

Logical expressions can be constructed using meta tags. The following meta tags are
available :
• AND type = 0
• OR type = 1
• NOT type = 2

 SPECTO manual Page specification

SPECTO - 39 - NLS

For the example in ‘editing a web-page configuration’ (page 9) the following formulas are
specified :

If (page contains ‘welcome’ or ‘willkommen’)

and page contains ‘SPECTO’
then continue with the next page of the chain.

If page contains ‘nicht gültig’
then continue with page 2 of the chain.

Usage of variables

During processing of a chain variables can be used to transmit information dynamically
from one URL to the next URL.
Variables can be set fix, computed according to a formula or extracted from selected parts
of the page returned from the current URL.

• var set/cmp content = “variable_name : variable_value”. The ‘variable_value’ can be
a constant or computed (see preceeding chapter ‘variables in parameters). Instead of
assignments also comparisons can be made using ‘<’, ‘>’, ‘=’ and ‘#’ operators.
During comparison first a numeric evaluation of the two components will be tried; if
that fails an alphanumeric comparison will be made.

• var left content = “variable_name : search_text”. Extracts the text left from
‘search_text’ and stores it in the variable ‘variable_name’.

• var right content = “variable_name : search_text”. Extracts the text right from
‘search_text’ and stores it in the variable ‘variable_name’.

• var betw. content = “variable_name : search_text_left : search_text_right”.
Extracts the text between ‘search_text_left’ and ‘search_text_right’ and stores it in
the variable ‘variable’.

• Custom types 100 to 999

Examples :

Custom type (Exits)

Custom types are submitted together with the content values to the customer supplied java
class :

e.g. ‘SpectoCustom’,

method :
e.g. ‘String computeContentLogic(String id, String param)’

The Parameter ‘Id’ will be supplied automatically.

Then the content entry could be (using variable ‘SearchText’) :
 SpectoCustom:computeContentLogic:%%SearchText%%

Page specification SPECTO manual

SPECTO - 40 - NLS

The method has to separate the page result from the supplied parameter. Both are
concatenated, separated by a binary zero (‘\u0000’) and are supplied in the parameter
‘param’). The content check is assumed okay if the method returns the string ‘true’.

The demonstartion method shown below checks if the supplied parameter (the content of
variable ‘SearchText’ in the demonstration entry) is part of the page returned by the URL.

// content check method

 public static String computeContentLogic
(String id, String param) {

 String result = "";
 String page = "";
 int index0 = 0;

 if ((index0=param.indexOf("\u0000")) >= 0) {
 page = param.substring(index0+1);
 param = param.substring(0, index0);
 }
 if (page.toLowerCase().indexOf(param) >= 0)
 result = "true";
 return result;
 }

 SPECTO manual Page specification

SPECTO - 41 - NLS

Advanced settings (‘set’ command)

The processing of URLs can be fine tuned by a variety of properties. Those properties can
only be set in ‘process …’ scripts. The script command ‘set’ is used for setting properties.
(See also chapter ‘SPECTO Script’).

Available properties :

Property name Description Allowed values /

examples
defaultFollowUp Base directory of SPECTO

installation

deleteEmptyCookies cookies with an empty content
will not be transmitted to the
target

true, false (default is
‘true’)

deleteExpiredCookies cookies which are expired will
not be transmitted to the target

true, false (default is
‘true’)

deleteCookiesWoExp cookies without an expiration
date will be ignored

true, false (default is
‘false’)

loadIncludedObjects All objects specified in the
accessed HTML page (graphics,
frames, etc.) are also loaded and
their load time becomes part of
the page load time

true, false (default is
‘false’)

maxIncludedObjects Maximum number of objects to

load.
Default is ‘25’.

monitorWaitTime time in milliseconds the
monitor process waits before a
waiting chain thread is reported
as an error (‘waitloop’ error)

numeric (default is
‘30000’)

appletInitWaitTime time in milliseconds the URL is
delayed after an applet was init

numeric (default is
‘5000’)

limitMaxAutoRedir during auto redirection this
property specifies whether the
maximum number of
redirections will be limited (to
10).

true, false (default is
‘false’)

notificationEnable controls generation of
notifications, e.g. in sub-chains.

true, false (default is
‘true’)

notificationAddError controls whether any or only
the first error within a chain
will increase the error counter.

true, false (default is
‘true’)

notificationSubject the subject used for a
notification (where applicable,
e.g. email, SMS, fax). The
subject is extended with
‘remember’ / ‘release’ flags and
the client/chain/url hierarchy.

any text, including
variables. An empty
setting displays the
default text.

Page specification SPECTO manual

SPECTO - 42 - NLS

allowGzipEncoding allow the web server to return
result in zip format.

true, false (default is
‘false’)

allowCompressEncoding allow the web server to return
result in compress format.

true, false (default is
‘false’)

allowDeflateEncoding allow the web server to return
result in deflate format.

true, false (default is
‘false’)

contentType the HTTP ‘content-type’
header entry. Several headers
(e.g. the ‘multipart’ family) get
special treatment.

GET: text/html
POST: application/x-
www-form-urlencoded

binaryRead Binary read instead of
ASCII/Text read

true, false (default is
‘true’)

HTTPMethodVersion Not yet used -
noParamSeparators The parameters specified for an

URL are not separated by the
‘&’ character (useful e.g. for
applets)

true, false (default is
‘false’)

SOAPAction The optional HTTP
‘SOAPAction’ header field.

socketEarlyClose During socket operations the
sending socket is closed directly
after the content has been
transmitted.

true, false (default is
‘false’)

socketMaxWaitTime The maximum time (specified
in milliseconds) the system
waits for an answer on the
receiving socket.

A positive number.
Default is 10000.

nativePollWait If, after issuing a native
command, the system will wait
for the result.

true, false (default is
‘true’)

nativeMaxWaitTime The maximum time (specified
in milliseconds) the system
waits for an answer on an
issued native command.

GET: text/html
POST: application/x-
www-form-urlencoded

dispLenVar The number of characters
shown of a variables content
during ‘single step’ or ‘one run’.

A positive number.
Default is 60.

userAgent the HTTP ‘user-agent’ header
entry.

default: Mozilla/4.0
(compatible; MSIE 5.0;
Windows NT; DigExt)

maxResultSize Only during ‘binary reads’ :
Limit the size of the result page
read from the web server; the
rest is discarded. SPECTO
does not wait for the end of the
transmission.

in bytes (default is
‘1000000’)

writeSubResults save also the timing results of
chains called via GOSUB.

true, false (default is
‘false’)

delayToNextURL time in milliseconds to wait
before the execution of the

any positive number

 SPECTO manual Page specification

SPECTO - 43 - NLS

next chain; this overwrites the
GUI ‘Delay to next URL’ parameter.

Network protocol properties

Following the ‘net.’ Prefix the following networking properties can be set (example : ‘set
net.http.ProxyHost myProxy.myCompany.com’) :

java.net.preferIPv6Add
resses

Use IP6 addresses if
available.

true, false (default is ‘false’)

http.proxyHost Network name (not ip
address) of the HTTP proxy

any positive number

http.proxyPort Port of the HTTPS proxy
server

any positive number between
0 and 65535. Default is 80.

http.nonProxyHosts Network domains or names
(not IP addresses) not to be
accessed using the proxy.

List of names, separated by a
‘|’ character. Example :
*.foo.com|localhost

https.proxyHost Network name (not ip
address) of the HTTPS
proxy server machine.

Any dns name.

https.proxyPort Port of the HTTPS proxy
server

any positive number between
0 and 65535. Default is 80.

https.nonProxyHosts Network domains or names
(not IP addresses) not to be
accessed using the proxy.

List of names, separated by a
‘|’ character. Example :
*.foo.com|localhost

ftp.proxyHost Network name (not IP
address) of the ftp proxy

any positive number

ftp.proxyPort Port of the ftp proxy server any positive number between
0 and 65535. Default is 80.

ftp.nonProxyHosts Network domains or names
(not IP addresses) not to be
accessed using the proxy.

List of names, separated by a
‘|’ character. Example :
*.foo.com|localhost

socks.proxyHost Network name (not IP
address) of the http proxy

any positive number

socks.proxyPort Port of the proxy server any positive number between
0 and 65535. Default is 1080.

B2B properties

Also special b2b properties are available; they are explained in chapter ‘B2B’.

A list of all properties with their default values can be displayed using command
‘properties’.

Page specification SPECTO manual

SPECTO - 44 - NLS

Follow up computation

The page status computation may also return the number of the next page to be executed
(column ‘next’).

The following values are supported :

Value Function
Positive number go to the URL with that index
-1 (‘next’) the next URL of the chain will be used

(sequential order, this is the default processing).
-2 (‘break’) terminate this run of the chain processing
-3 (‘onError’) if no error occured, go to the next URL of the

chain (same as –1), otherwise terminate this
run.

-4 (‘byVar’) then, if specfied, go to the URL specified in
variable 'nextURL' otherwise go to the next
URL (like -1)

-5 (‘return’) Return to the chain and URL of the last call
-6 (‘quit’) Quit the processing of this chain thread.
-7 (‘repeat’) Repeat this URL
between -100 and –999 the number is interpreted as -xyy with x being

the error class+1 and yy the URL index which
will be switched to if the preceeding URL
ended in an error of the specified error class.
(error classes: 0=timeout, 1=toolong,
2=content, 3=custom, 4=waitloop).
eg. -202 = if error was 'tooLong' then go to
URL index 2

between -1000 and –99999 the number is interpreted as –xx0yy with xx
being the chain index + 1 and yy the URL
index which will be switched to.
e.g. –4002 go to URL 2 of chain 3

any other case (which normally should not happen) just go to
the next URL (like -1)

Instead of the above numeric notation the chain and URL may also be specified with their
name / symbolic name in the ‘colon’ format :

chain_name:URL_symbolic_name

Example :

If the chain name is ‘Auto-Specto’ and one of its URLs has the symbolic name ‘StartPage’
then ‘Auto-Specto:StartPage’ is a legal follow-up value. Instead of the URL’s symbolic
name also its Id may be used; in the example here, if the URL ‘StartPage’ is the first URL :
‘Auto-Specto:0’.

 SPECTO manual Page specification

SPECTO - 45 - NLS

Working with text

Treatment of special characters

Especially when specifying URLs or their parameters it may become necessary to work
with special characters which cannot be displayed by the SPECTO web front end and/or
cannot be stored within a database without conversion. Examples are all ascii values below
32 and the ‘, “ and “ characters.

SPECTO supplies a syntax to specify any character as its hexadecimal representation using
following syntax :

\unnnn where nnnn is the hexadecimal specified Unicode value of the character.

Abbreviations :

\\ is equal to the backslash character
\r is equal to \u000d
\n is equal to \u000a

Special characters in the above notation may be used almost at any place where SPECTO
allows the entry of text.

Wherever text can be entered, SPECTO allows for a linkage to text areas (see next section
for a discussion of text areas) by using the \l<linkname>\l syntax. The content of the
specified text area will replace the linkage at run time. The link name can be numeric id of
the text area, or its symbolic name.

Example :

If the text area ‘company’ would consist of the text ‘my company at my home’ and it a text
field has the content ‘this is /lcompany/l’ then the resulting content of the text field (at
runtime) would be ‘this is my company at my home’.

Text areas

In certain situations a constant text is used in multiple places, or a SPECTO text field may
be too small to hold a specific text. For such cases SPECTO provides text areas which are
persistent and unlimited in size. Text areas are maintained using the ‘ta <linkname>’
command. Links to text areas can be inserted at any place where special characters are
permitted and can be nested. An irresolvable text area link will not insert any text.

Page specification SPECTO manual

SPECTO - 46 - NLS

The link name may be numeric or a symbolic name.

Text areas refer to SPECTO variables using the ‘%%<variable_name>%%’ syntax. They
may include other text areas using the ‘link’ syntax.

The text area above was displayed using the ‘ta SOAP-query’ command. The ‘Prev’
and ‘Next’ buttons allow for navigation within the defined text areas.

The defined text areas may be listed using the ‘tal [prefix] command. For example the
command ‘tal SOAP’ will display a list similar to the one displayed below:

Following the ‘Id’ link will go to the edit screen with the selected text area loaded and
selecting the ‘delete’ link will remove the text area from the database.

Creating a new text area :

To create a new text area it is first required to create the text area with a new, unique id. To
find an unused id, use the ‘tal’ command. Then create the new text area using ‘ta
<new_id>’. The above editing screen will appear, and the content of the text area and a
symbolic name (which may be used instead of the id) can be entered. Then use ‘Save’ to
save the new text area to the database.
Command ‘ta <new_name> create’ may be sued to create a text area with a
symbolic name, in this case the id will be computed automatically (id range above 10000).

Text areas are cached by SPECTO; you may use command ‘ca’ to review the cache status.

 SPECTO manual Page specification

SPECTO - 47 - NLS

Page analysis

The ‘pa <url>‘ command (example: ‘pa www.altavista.de’) is provided to
analyze an existing web page. The information returned may be used to create a SPECTO
parameter entry.
Analysis is done for :

 Frames
 Title and other unique information which may be used for identification
 References (‘links’)
 Forms
 Scripts (e.g. ‘javascript’ / ‘jscript’)
 Applets
 Unknown constructs

Example result returned for ‘www.altavista.de’ :

SPECTO Command output:

Analysis of page 'http://www.altavista.de' :
Titles :
Line 2 : altavista.de® - deutschland - suche
Frames :
- none -
Forms :
Line 72 : action="/cgi-bin/query" name=mfrm
Line 78 : action=/cgi-bin/domainame method=post
References :
Line 42 : ="/index.html"
Line 68 : ="http://ad.de.doubleclick.net/jump/homepgtable…
Line 71 : ="http://ad.de.doubleclick.net/jump/homepgtable…
Line 72 : ="http://ad.de.doubleclick.net/jump/homepgtable…
Line 73 : ="http://www.spiegel.de/sport/fussball/0,1518,alt…
Line 74 : ="http://www.spiegel.de/wissenschaft/0,1518,alt…
Line 75 : ="/smart"
Line 76 : ="http://www.zdnet.de/news/artikel/2000/09/090…
Line 77 : ="http://www.zdnet.de/news/artikel/2000/09/090…
Line 78 : ="/doc/help/h_se_image_help_001.html"
Scripts :
Line 12 : language="javascript1.2"
Line 27 : language="javascript"
Input fields :
Line 72 : =hidden name=pg value=q
Applets :
- none -
Ambiguous :
- none -

Page specification SPECTO manual

SPECTO - 48 - NLS

Session management

General

There are two session managing technologies used in the (normally stateless) HTTP
environment: session-ids and cookies.

Session Id

Theory of operation:
(After a login) the web server provides the session identification as a name/value pair in a
hidden input value of a form. When the user selects a component of the form (e.g. a
button) the name/value pair will be automatically inserted in the URL by the browser.

Specto operation:
Specto requires the name of the session id (often 'session') to be specified in the chain
configuration. Whenever the session id is recognized in the page submitted by the web
server its value is stored. The session ids name and its stored value will then be included (as
first parameter) of every URL sent by SPECTO.

Cookies

Theory of operation:
The web server sends (always / once ?) a cookie (represented as an entry in the page header
with the tag 'Set-Cookie' and the value in the form 'name=value' to the browser. In every
communication with that web server the browser transmits the cookie(s) in the request
header.

Specto operation:
Whenever a cookie is detected in the response header sent from the web server Specto
extracts and stores both name and value. When the same page is accessed again, Specto
adds the cookie(s) as fields (tag name 'Cookie') of the request header.
Cookie operation in Specto is automatic, no configuration is required.

SPECTO maintains session ids in the ‘session’ field of a URL configuration line. If
multiple session ids are required, they are concatenated in this field separated by ';'.

 SPECTO manual Page specification

SPECTO - 49 - NLS

Reference measurements

General

Measurements of a chain can be set in relation to a reference. SPECTO supports two types
of references: reference-URLs and URL grouping.

Reference URLs

A reference URL is a single URL specified using properties ‘referenceURLChain’ and
‘referenceURLurl’. Whenever ‘referenceURLChain’ is set (usually during a PBT or PBC
event), for every URL of the chain a measurement of the specified reference URL is also
made. If ‘referenceURLurl’ is set (usually during a PBU event) this setting overrides the
‘referenceURLchain setting for the next URL.

Example: set referenceURLchain "http://www.yahoo.de";

Reference measurements are output during reporting in graphical and
tabular form in the daily views (commands ‘rg’ and ‘rh’). In the tabular
form reference values are shown in addition to the original
measurement as a separate line prefixed by an ‘R’. In the graphical view
reference measurements are displayed as square points in the same
color as the referenced original measurements.

Reference measurements are also visible in the reporting list (command ‘rl’), marked by the
‘reference’ identifier.

URL grouping

Standard reporting which displays all measurements of all URLs of a chain can be
enhanced in two ways :
- hiding of selected URLs. This is done using the flag ‘Hide in rep.’ in the URL

configuration form (this only affects the display of measurement results, the
measurements are taken nevertheless)

- adding various other chain/URL measurements (URL grouping)

URL grouping allows specifying a set of URL measurements of other chains which are
displayed in addition to the URLs of the selected chain. The additional URLs are specified
as trailing parameter of ‘rg’/’rh’ commands : ‘{ chainId/URLId, }’. The syntax is detailed
in chapter ‘Reporting’.

Non-HTML contents SPECTO manual

SPECTO - 50 - NLS

Non-HTML contents

Overview

Standard communication and content formatting in the web is based on standards of the
W3C and relies on the HTTP protocol and the HTML format. Due to certain limitations,
over the time extensions have emerged. The most common are :

• Applets by Sun corporation
• The PDF document format by Adobe corporation
• Flash by Macromedia corporation

Also special applications may communicate using the HTTP protocol directly.

HTTP direct

Special solutions may be constructed by directly accessing the HTTP protocol. The
necessary logic has to be maintained in a ‘java script’ program.
The supplied functions are :

• HEAD (all four types are supported)
• POST
• PUT
• GET
• DELETE
• OPTIONS
• CONNECT
• VALUE=<value>

The HTTP direct commands are entered in URL pages in the form : ‘http-
direct::<function>:header-entries:content.

Multiple header entries must be separated by semi-colons (‘;’).
Content may also be supplied by the usage of parameters.
Variables, text-areas and content-check are available without restrictions

Examples :
http-direct::POST:content-type=proprietary;content-length=32:logon
http-direct::VALUE=\u0027::%%result%%

 SPECTO manual Non-HTML contents

SPECTO - 51 - NLS

HTTP Protocol Version 2

The version 2 of the HTTP protocol, commonly referred to as HTTP/2 can be used
instead of HTTP version 0.9, 1.0 or 1.1.

The usage of HTTP/2 can be specified on an URL basis in the GUI:

Or it can be defaulted (logical ‘OR’ed with the GUI based specification) in a PBx script by
setting the ‘defaultUseHttp2’ property.

Example script:
 specto.setProperty("defaultUseHttp2", true);

All common HTTP/1.x functionalities like Redirects, Cookies, Proxy, Authorization,
certificates work identically when using the HTTP/2 protocol version. Especially the
certificate stores (for client and server certificates) is shared among the two protocol
families.
However note that, because the SPECTO HTTP/2 implementation is internally base don a
completely different protocol stack, the messages during ‘OneRun’ debugging are slightly
different.

HTTP/2 Server Push

SPECTO URL access using the HTTP2 protocol understands ‘PUSH_PROMISE’ frames
and automatically integrates them in the response content.
To give the server enough time to issue a PUSH, the SPECTO wait time before ending the
request can be set using the ‘pushWaitTimeInMS’ property (default 0 milliseconds,
indicating that no server PUSH is expected).

Example script:
 specto.setProperty("pushWaitTimeInMS", 1000);

Non-HTML contents SPECTO manual

SPECTO - 52 - NLS

Web Sockets

Web Sockets are an extension of the classic HTTP protocol to allow a bidirectional,
message orientated communication between the client (e.g. a browser, or a SPECTO
instance) and a Web Socket enabled server.

The usage of the web socket protocol is indicated by using ‘ws:’ or ‘wss:’ in the scheme
part of the URI:

ws://specto-rhodium.de:8444 for unencrypted communication

or

wss://specto-rhodium.de:8443 for encrypted communication

The SPECTO engine then automatically performs the defined Web Socket mechanism:

- Establish a HTTP or HTTPS connection to the Web Socket host
- Inquire an ‘Upgrade’ to ‘websocket’ via the ‘Upgrade’ HTTP header
- Supplies a key in the "sec-websocket-key" parameter
- Checks the server response and verifies the ‘Accept’ token supplied in the “sec-

websocket-accept” header field.

Then the communication is switched from the client/server HTTP to the bidirectional
Web Socket communication.

The following SPECTO properties (which may be set in a PBx script using the
‘.setProperty()’ method) further detail the communication:

wssUseHttp2 Whether the communication shall start using the HTTP/1.x

(default) or HTTP/2 protocol version.

wssWaitTimeInMS The time (in milliseconds) to wait for server responses (the

Web Socket protocol allows for multiple response) after
sending the message to the server. Default is 500 milliseconds.

wssParamsAsSepMsgs Whether each URL parameter shall be communicated as a

separate Web Socket message, or (default) the parameters will
be concatenated and transmitted as a single message

Example script:
 specto.setProperty("wssWaitTimeInMS", 1000);
 specto.setProperty("wssUseHttp2", true);
 specto.setProperty("wssParamsAsSepMsgs", true);

 SPECTO manual Non-HTML contents

SPECTO - 53 - NLS

Socket / Port access

Above methods are correlated with socket services, described in chapter ‘Port / socket
services’.

Port/Socket requests use the following formats:
Port-tcp:port-number:url-or-ip and Port-udp:port-number:url-or-ip

Example:

Parameter and result processing is identical to other URL-types.

Above methods only check the availability of the socket service; the answer from the
SPECTO engine is ‘okay’ if the connection could be established, or an error message if not.

For scenarios where a more detailed communication has to be established the ‘port:’
(alternate name ‘socket:’) method can be used. It fully features SPECTO parameters and
content check options. The syntax is identical to that of ‘port-tcp:’.

Example :

There are two definable TCP-timeouts for Port access : ‘portConnectTimeout’ and
‘portSoTimeout’; both are available as attributes and as script-properties. Their values are
in milliseconds; the defaults are 5000 and 2500.

Non-HTML contents SPECTO manual

SPECTO - 54 - NLS

Ping

SPECTO features an ICMP protocol implementation allowing for ping requests.

Syntax :
ping:<hostname>

The resulting output is similar to :
Source:
192.168.73.200 : delay=10

 SPECTO manual Non-HTML contents

SPECTO - 55 - NLS

Telnet / SSH access

SPECTO supports the automation of command dialogs using traditional telnet or secure
ssh protocols as it is defined in RFC 854.

SSH supports IDEA, Blowfish and RSA/PKCS#1 encryption.

Syntax :
telnet:<hostname>[: <port>] default port number is 23
ssh:<hostname>[: <port>] default port number is 23

Parameters :

Username and password have to be supplied with the standard SPECTO mechanism (types
‘username’ and ‘password’).
In any additional parameter entry the ‘value’ field is used as a command which is send to
the target. Before the sending of a new command, the received output is parsed for the
occurrence of the pattern specified in the ‘parameter’ field, to assure that the system has
responded completely to the previous command (the logon is considered a command also).
Usually the command line prompt of a system is used for that check. UNIX systems
regularly use ‘username’@’systemname’ as prompt.
Note: If the specified value does not match the string returned by the target the SPECTO engine will wait
until a socket timeout will occur (usually after about 30 seconds).

The common SPECTO content check mechanisms are available to parse the output
returned from the target.

Example :

In the above example the user ‘root’ with password ‘notsecret’ is using telnet protocol to
log in to system 192.168.73.230 on port 23. Then the three commands ‘ls’, ‘ps’ and ‘who’
are executed. Before the execution of the commands it is waited for the string ‘root@’ to
appear in the returned answer.

Non-HTML contents SPECTO manual

SPECTO - 56 - NLS

File access

Files in text or binary formats can be read from the SPECTO engine’s target machine’s file
system or any remote file system mounted by NFS, SMB/Samba.

Syntax :
file: [<share>] <filename>

Example :

The content of the fetched file is available as SPECTO content and can be used for
content checks.

 SPECTO manual Non-HTML contents

SPECTO - 57 - NLS

SNMP (‘mib’)

MIB variables can be read using SNMP protocol in versions 1, 2c and 3.

Syntax :
snmp:<hostname> [: <mib_variable>]

The parameter section is used to specify properties of the access. The following properties
are available :

Name description example
version SNMP protocol version. Valid are 1, 2 and 3. 2
port The port for the SNMP protocol. Default = 161. 161
mib The (first) mib variable to be fetched. This

overwrites a mib variable specified in the URL
1.3.6.1.2.1.1.3

community The SNMP community public
repetitions The number of successive mib variables to be

fetched (not available for version 1)
10

context Context (only available for version 3) public
engine Engine Id (only available for version 3) 010000a1d41e4946
contact Contact (only available for version 3)
user Username for access (only available for version 3) guest
password The password (only available for version 3) insecure
authprotocol The protocol for authentication. (‘MD5’ or

‘SHA1’). Default = ‘MD5’.
SHA1

debug Level of console messages (0 to 15) 0 denotes no
console messages. Default = 0

0

Example :

The values of the fetched mib variables are available as SPECTO content; they can be used
for content checks.

Non-HTML contents SPECTO manual

SPECTO - 58 - NLS

File transfer protocol (FTP)

There are two specifications for file transfer using the tcp/ip file transfer protocol :
- rfc 959 (the older)
- rfc 1738 (the newer, URL based)

Both specifications are supported by SPECTO.

RFC 959

Syntax :
ftp:<hostname>/<filename>

You have to supply username and password as parameters (types ‘username’ and
‘password)

Example :

RFC 1738

Syntax :
ftp://<user>:<password>@<hostname>/<filename>

Example :

The content of the fetched file is available as SPECTO content and can be used for
content checks.

 SPECTO manual Non-HTML contents

SPECTO - 59 - NLS

SQL (relational database) access

SPECTO supports full database DML and DDL as supported by available JDBC database
drivers. It is possible to register additional vendor supplied database drivers. The following
databases are supported directly :

 ODBC (Windows platform only) driver id 0 / n.a.
 Borland JDataStore driver id 3 / n.a.
 Oracle driver id 5 / 6 (UNIX)
 MS SQL server driver id 10 / n.a.
 SAP SAPDB driver id 11 / 12 (UNIX)
 Sybase Adaptive Server driver id 13 / 14 (UNIX)
 mySQL driver id 15 / 16 (UNIX)
 Hypersonic driver id 17
 Cloudscape (releases >= 10) driver id 19

Syntax :
sql: [<database_driver_id> |] database_URL

Parameters :

Username and password have to be supplied with the standard SPECTO mechanism (types
‘username’ and ‘password’).
In any additional parameter entry the ‘value’ field is used as a SQL command which is send
to the target.

The parameter field denotes the type of access made to the database:
If empty a SQL query is performed, if ‘statement’ a SQL statement (statements are SQL
commands which are not expected to return results, e.g. an insert) is executed, if ‘prepared’,
a SQL prepared statement is defined and executed (e.g. to execute a stored procedure; also
with some databases DDL statements also have to be executed as prepared statements).

The generated outputs includes all rows separated by CR/LF and is prefixed with a row of
the column names.
The common SPECTO content check mechanisms are available to parse the output
returned from the target.

For database specific information see also chapter ‘Databases’.

Non-HTML contents SPECTO manual

SPECTO - 60 - NLS

Example :

In the above example the MS SQLServer database ‘spectod’ on machine ‘localhost’, port
1433 is accessed using username ‘specto’ with password ‘password’.

Two SQL selects (‘select * from clients’ and ‘select * from chains’) are executed in
sequence.

 SPECTO manual Non-HTML contents

SPECTO - 61 - NLS

LDAP (directory) access

SPECTO supports LDAP v3 protocol to read LDAP (‘lightweight directory access
protocol’) directories :

Syntax :
ldap: [<version> |] directory_URL [:port]

Parameters :

Username and password have to be supplied with the standard SPECTO mechanism (types
‘username’ and ‘password’). If not specified or empty no authorization is performed. The
search base (may be empty for the root), search string (in LDAP filter format.), and the
columns to be returned, are specified using parameters ‘base’, ‘filter’ and ‘column’. Multiple
columns can be specified, if none specified all columns are returned.

The generated output includes all rows separated by CR/LF. Every row starts with the
‘distinguished name’, followed by ‘ : ‘ and then the list of columns. Every column’s value is
separated by ‘ = ‘ from the column’s name.

Attributes ‘ldap.maxWait’ and ‘ldap.maxItems’ (menu ‘customizing – network – protocols’)
allow to restrict the wait time and the number of returned items.

Example :

This example queries a public available LDAP directory (by Novell Inc.) for all entries in
the ‘us’ branch with the name starting with ‘ela’ and the tile being ‘accountant’. Returned
are the columns ‘cn’ and ‘telephoneNumber’. A check against ‘Elanor’ is performed.

Above example LDAP query returns the following output (obtained via ‘one run’) :

Non-HTML contents SPECTO manual

SPECTO - 62 - NLS

SOAP (web services) access

SPECTO supports SOAP version 0.9, 1.0 and 1.1 to access web services : SPECTO
supplies three different implementations of SOAP access :

 Based on the ‘Apache’ SOAP framework
 Based on the SUN webservices ‘JAXM / SAAJ’ SOAP framework
 Based on the SPECTO internal XML capabilities and SOAP document library

‘Apache based’ SOAP access :

The reason for usage of the Apache SOAP library is to supply the ‘defacto’ SOAP
standard.

Syntax :
soap: [<version> |] web_service_URL

Parameters :

Parameters are specified with their parameter name and an optional Type (= java class)
separated by a ‘:’ character. If no parameter type is specified SPECTO auto detects Text,
numerical and Boolean parameters.
The common SPECTO content check mechanisms are available and are applied to the
textual representation (Java ‘.toString()’ method) return value of the called SOAP method.

A WSDL specification may be checked against the supplied parameters by specifying the
(script) property ‘checkSOAPforWSDL <WSDL>’.

Example :

In the above example the web service function ‘soapdemo1’ is executed on host
‘www.nls.de/soaps’.

 SPECTO manual Non-HTML contents

SPECTO - 63 - NLS

JAXM/SAAJ based SOAP access :

Syntax :
soapj: function | web_service_URL

Function :
The function is a single name or an aggregate of the form ‘function ; namespace ; urn’.
Note : If the function is preceded with a ‘!’ character the request is not really executed
but the generated SOAP request is returned as response (for debugging purposes).

Parameters :

Parameters are specified with their parameter name and optional attributes separated by a
‘|’ character. Any attribute is of the form ‘name=value’; the name is specified like the
function name.
Complex parameter contents should be prepared using a script during PBU and transferred
via a variable. See chapters ‘SpectoScript’ (page 96) and ‘JavaScript’ (page 123) for details.

If a parameter is prefixed with a ‘.’, it and following parameters will be positioned within
the parameter before; if a parameter is prefixed wit ‘..’ it and the following parameters will
be positioned within the parent of the current parameter.

If a parameter name is prefixed with ‘!’, it is inserted as a SOAP attachment instead of a
element within the request.

The common SPECTO content check mechanisms are available to parse the output
returned from the target. A PAU script may be used to extract content into variables to be
used during content check.

Example :

Web search via Google’s web API :

In the above example the Google web service function ‘doGoogleSearch’ with parameters
‘key’ to ‘oe’ is executed on host ‘http://api.google.com/search/beta2’.

Non-HTML contents SPECTO manual

SPECTO - 64 - NLS

In that example the following XML request is generated :

<SOAP-ENV:Envelope xmlns:SOAP-ENV= "http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<nsl:doGoogleSearch xmlns:nsl="urn:GoogleSearch">

<key>8D22DSBQFHK/eS/HHRO925CbTRVwmjMH</key>
<q>NLS specto</q>
<start>0</start>
<maxResults>10</maxResults>
<filter>true</filter>
<restrict/>
<safeSearch>false</safeSearch>
<lr/>
<ie>latin1</ie>
<oe>latin1</oe>

</nsl:doGoogleSearch>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

returning this result :

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:doGoogleSearchResponse xmlns:ns1="urn:GoogleSearch"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="ns1:GoogleSearchResult">
 <directoryCategories
 xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns2:Array"
 ns2:arrayType="ns1:DirectoryCategory[0]">
 </directoryCategories>
 <documentFiltering xsi:type="xsd:boolean">false</documentFiltering>
 <endIndex xsi:type="xsd:int">10</endIndex>
 <estimateIsExact xsi:type="xsd:boolean">false</estimateIsExact>
 <estimatedTotalResultsCount xsi:type="xsd:int">17</estimatedTotalResu…
 <resultElements xmlns:ns3="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns3:Array" ns3:arrayType="ns1:ResultElement[10]">
 <item xsi:type="ns1:ResultElement">
 <URL xsi:type="xsd:string">http://www.NLS.de/Specto/</URL>
 <cachedSize xsi:type="xsd:string">3k</cachedSize>
 <directoryCategory xsi:type="ns1:DirectoryCategory">
 <fullViewableName xsi:type="xsd:string">Top/Science</fullViewable…
 <specialEncoding xsi:type="xsd:string"></specialEncoding>
 </directoryCategory>
 <directoryTitle xsi:type="xsd:string">NLS</dire…
 <hostName xsi:type="xsd:string"></hostName>
 <relatedInformationPresent xsi:type="xsd:boolean">true</related…
 <snippet xsi:type="xsd:string">Optimization</snippet>
 <summary xsi:type="xsd:string">Business monitoring</summary>
 <title xsi:type="xsd:string"></title>
 </item>
 <item xsi:type="ns1:ResultElement">
 ...
 </resultElements>
 <searchComments xsi:type="xsd:string"></searchComments>
 <searchQuery xsi:type="xsd:string">NLS Specto</searchQuery>
 <searchTime xsi:type="xsd:double">0.182448</searchTime>
 <searchTips xsi:type="xsd:string"></searchTips>
 <startIndex xsi:type="xsd:int">1</startIndex>
 </return>
 </ns1:doGoogleSearchResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 SPECTO manual Non-HTML contents

SPECTO - 65 - NLS

For more complex SOAP requests it is possible to use a PBU script to define the request
and a PAU script to analyze the response. The SPECTO JAXM based SOAP
implementation is fully integrated into the SPECTO Javascript script language and allows
the unlimited usage of all JAXM methods.

Getting a JAXM reference : <soapj> = specto.getSOAPJ();

The reference retrieved with above function ‘specto.getSOAPJ()’ includes the following
predefined objects :
SOAPConnectionFactory scf;
SOAPConnection connection;
MessageFactory mf;
SOAPMessage request;
SOAPMessage reply;
SOAPPart part;
SOAPEnvelope envelope;
SOAPHeader header;
SOAPBody body;
SOAPElement soapFunc;

They can be maintained with all methods of the JAXM and SAAJ packages. Description
about that packages can be downloaded from SUN microsomputer’s Java web site for
SOAP processing (‘http://java.sun.com/xml/saaj/index.jsp’).

A sample PBU script to define a SOAP request :

// script=js;
// demo for JAXM based SOAP pre-processing

// make and get the SOAP JAXM environment
soapj = specto.getSOAPJ();

// helper function for parameter insertion
function addc(name, value) {
 ce = soapj.soapFunc.addChildElement(
 soapj.envelope.createName(name));
 ce.addTextNode(value);
}

// the main routine
if (true) {
 specto.message("constructing SOAPJ request");
// create the function
 func = "doGoogleSearch;nsl;GoogleSearch";
 fName = soapj.createName(soapj.envelope, func);
 soapj.soapFunc =
 soapj.body.addChildElement(fName);
// add the parameters
 addc("key", "aBKKClRQFHIQCFNirBHOUvhS9dZh5Aew");
 addc("q", "NLS specto");
 addc("start", "0");
 addc("maxResults", "8");
 addc("filter", "true");
 addc("restrict", "");
 addc("safeSearch", "false");
 addc("lr", "");

Non-HTML contents SPECTO manual

SPECTO - 66 - NLS

 addc("ie", "latin1");
 addc("oe", "latin1");
// note that parameters defined on the screen
// are added to (after) those defined here
}

A sample PAU script to analyze the returned SOAP response :

//script=js;
// example of PAU for JAXM based SOAP access

// a helper function for node hierarchy
function walk (tChild) {
var children, currChild, numC;
 specto.message("child: " + tChild.getNodeName() +
tChild.getNodeValue());
 if (tChild.hasChildNodes()) {
 children = tChild.getChildNodes();
 numC = children.getLength();
 for(i=0; i<numC; i++) {
 currChild = children.item(i);
 specto.message("xxx : " + currChild.getNodeName());
 walk(currChild);
 }
 }
}

// get the instance of the SOAP JAXM class
soapj = specto.getSOAPJ();

// errors occured ?
specto.message("errors : " + soapj.body.hasFault());

// the children
mainChildren = soapj.body.getChildElements();
while (mainChildren.hasNext()) {
 child = mainChildren.next();
 walk(child);
}

// info about attachments
numa=soapj.reply.countAttachments();
specto.message("Number of attachments : " + numa);
if (numa > 0) {
 attachments = soapj.reply.getAttachments();
 for(i=0; i<numa; i++) {
 specto.message(i + " : " +
 attachments.next().getContent().toString());
 }
}

SOAPJ PAU processing is also possible using SPECTOScript it provides the following
functions for that :

SpectoScript : <reply> = soapj.get “reply”;

 <countA> = soapj.numAttachments;
 <valueA> = soapj.getAttachment <index>;
 <sizeA> = soapj.getAttachmentSize <index>;

 SPECTO manual Non-HTML contents

SPECTO - 67 - NLS

Generic SOAP access :

Syntax :
http: web_service_URL

Parameters :

Parameters are specified with their parameter name and an optional Type (= java class)
separated by a ‘:’ character. If no parameter type is specified SPECTO auto detects Text,
numerical and Boolean parameters.

SPECTO includes a number of predefined attributable documents for the various SOAP
formats. See chapter ‘business-to-business’ for details.

The common SPECTO content check mechanisms are available to parse the output
returned from the target.

Example :

//script=js

var soap_request =
"<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
"<soap:Envelope xmlns:xsi=\"http://www.w3.org/" +
"2001/XMLSchema-instance\" " +
"xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"> " +
" <soap:Body>" +
" <MetB><Par>1</Par><Par>2</Par></MetB>" +
" </soap:Body>" +
"</soap:Envelope>";

// save to variables which is later used as an URL parameter
specto.setVariable("sr", soap_request);

In the above example the web service function ‘MetB’ with parameters ‘1’ and ‘2’ is
executed on host ‘localhost’.

Non-HTML contents SPECTO manual

SPECTO - 68 - NLS

WebDAV (internet file) access

SPECTO supports WebDAV :

Syntax :
webdav: directory_and_file_URL

Parameters :

Username and password have to be supplied with the standard SPECTO mechanism (types
‘username’ and ‘password’).

The generated outputs includes all rows separated by CR/LF and is prefixed with a row of
the column names.
The common SPECTO content check mechanisms are available to parse the output
returned from the target.

Example :

In the above example the web-dav server on host ‘’ is queried for file ‘’.

 SPECTO manual Non-HTML contents

SPECTO - 69 - NLS

Programmed checks (scripts)

Instead of one of the built in access methods a custom script may be executed.

Syntax :
script: <scriptname>

Example :

Script of the above example :

// script=ss
// compute a random number
tron;
result = "0";
numargs = args.length;
if numargs ge 1;
 maxr = args 0;
 result = random maxr;
 if numargs ge 2;
 option = args 1;
 index = find$ option "offset=";
 if index ge 0;
 offset = mid$ option 7 9999;
 result = result + offset;
 result = “random: “ + random;
 endif;
 endif;
endif;
troff;
return result;

The content of the script is available as SPECTO content and can be used for content
checks.

Non-HTML contents SPECTO manual

SPECTO - 70 - NLS

Applets

Applets are applications developed in the Java programming language which are executed
in the browser. Usually (though not required) applets communicate with the server from
which they are loaded.

There must be differentiated between several ways of applet/server communication :

1. The applet is embedded in an HTML page and communicates within the browser
by reading HTML parameters. The requests sent to the server have the identical
syntax as requests submitted by the browser as the result of an HTML ‘<form>’
construct. The results sent back by the server is another HTML page which will be
displayed by the browser, no direct communication to the applet can appear.

2. The applet establishes an direct, bidirectional communication channel to the server.
The communication is based on the HTTP protocol. The data transmitted may be
HTML encoded or in an proprietary form, but usually ASCII encoded (variant 2a);
or generated by serialization of a java class (variant 2b).

3. The applet establishes an direct, bidirectional communication channel to the server.
The communication is based on a socket communication (which also may be RMI
(‘remote method invocation’) and therefore is ‘low level’. Data formatting is usually
proprietary. This variant is unusual because it is normally not possible to be used
through proxies/firewalls.

SPECTO assistance : applet emulation

Variant 1 does not need special treatment; it can be handled using standard SPECTO
mechanisms. In this case the applet is not loaded/executed by the SPECTO engine.

For variant 2 SPECTO uses special switches (‘post’ and ‘binary’) and the ‘http’ script
command for http header fields to program the HTTP communication.
In this case the applet is not loaded/executed by the SPECTO engine.

For variant 3 SPECTO uses a set of commands to program the socket communication.
In this case the applet is not loaded/executed by the SPECTO engine.
The URL must be type-specified as ‘RAW’ and a socket number has to provided. The
supplied parameters are concatenated without ‘?’ and ‘&’ separators and will not be ‘URL
encoded’.
Example : raw://socket-host.com:1204

SPECTO assistance : applet automation

As an extension to the mechanisms described above, especially variants 2b and 3, SPECTO
provides a mechanism to ‘automate’ the original applet. Here SPECTO does not directly
communicate with the web/application server any more, but calls methods of the applet
which then handles the communication with the server. The advantage is that details of the
complex applet-servlet communication need not be known by the SPECTO engine.

 SPECTO manual Non-HTML contents

SPECTO - 71 - NLS

In this case the applet is loaded and executed by the SPECTO engine and remains active
(in a separate thread) during the life cycle of a chain (optionally of the thread). All public
methods and public data of the applet are made available to be executed by SPECTO URL
definitions.

The syntax for the URL is :
To call a method : AppletName:MethodName()
To get a field content : AppletName:FieldName

SPECTO’s URL parameter mechanism (field ‘value’) is used for the method parameters
value specification. The ‘parameter’ field may be used to specify the type of the parameter.
If the type is not specified, Java type ‘String’ is assumed.
All capabilities of SPECTO parameters and content check specification are available.

To assist in evaluating the methods and data available in an applet the ‘paa
<AppletName>’ command (or the ‘analyze’ function in the URL specification screen) is
provided.

As part of the Specto tutorials the applet ‘SpectoTutorialApplet1’ is provided.

 SPECTO manual

SPECTO - 72 - NLS

PDF documents

There is no specific support for PDF documents in SPECTO. The availability, load time
and content of PDF documents can be evaluated using standard SPECTO mechanisms.
The advanced navigation features available in PDF since version 4 cannot be automated by
SPECTO.

Flash

There is no specific support for Flash applications in SPECTO. The availability, load time
and content of Flash scripts can be evaluated using standard SPECTO mechanisms.

Scalable Vector Graphics (SVG)

Pages coded using Scalable Vector Graphics are XML documents and may be processed
with SPECTO standard methods for XML documents.

The SPECTO engine has a SVG generator which is accessible via the script languages.

 SPECTO manual Advanced Topics

SPECTO - 73 - NLS

Advanced Topics

Proxy coverage

Overview

Usually intranets are separated from the internet by ‘firewalls’. ‘firewalls’ allow certain
protocols (e.g. http and smtp) to tunnel through themselves by the use of ‘proxy servers’.
Also ‘proxy servers’ are used by some internet providers for load balancing, caching and
filtering.
Beside the usual ‘http’ proxies there are ‘socks’ proxies which allow for highly secure
tunneling of applications through the firewall. So currently not much in use, ‘socks’ proxies
may spread when electronic commerce applications gain wider usage.
A proxy may require a client to authenticate itself using a userid/password scheme.

SPECTO fully supports proxy based infrastructure.

Commands :

It is recommended to use command ‘wp’ (see screen shot below) for a graphical proxy maintenance.

Other commands :
‘wp 0’ turn proxy assistance off.
‘wp 1’ enable global proxy for http, https and socks.

 SPECTO manual

SPECTO - 74 - NLS

Configuration

It is recommended to use SPECTO customizing (menu ‘customizing’) for proxy configuration.
Proxy configuration is via SPECTO attributes ‘ProxyHost’, ‘ProxyPort’, ‘ProxySocksHost’,
‘ProxySocksPort’, ProxyUserId’ and ‘ProxyPassword’. The default proxy usage (as
maintained using the ‘wp’ command) is configured in attribute ‘ProxyDefault’; if
‘ProxyDefault’ is not set, ‘0’ (no proxy usage) is assumed.
If the proxy configuration is changed during SPECTO operation; applying the ‘wp’
without parameters command will read the new configuration.

Example:

‘aw Proxyhost proxy.nls.de’, ‘aw ProxyPort 8080’ and ‘aw ProxyDefault 1’ prepare SPECTO to
direct all URLs to the proxy server ‘proxy.nls.de’, port 8080.

Notes :

• Proxy configuration is common for a SPECTO instance. If different URLs have to
be accessed with and without using a proxy or using different proxies, then those
proxies have to specified dynamically in the ‘PBC’ or ‘PBU’ event of the affected
chain or URL using the ‘Set’ command (see also chapter ‘Advanced settings (‘set’
command)’ for a list of proxy related properties and chapter ‘Dynamic proxy setting’
below).

Dynamic proxy setting

Example (Javascript) :

// script=js;
specto.setProperty("net.http.proxyHost", "localhost");
specto.setProperty("net.http.proxyPort", "82");
specto.setProperty("net.https.proxyHost", "localhost");
specto.setProperty("net.https.proxyPort", "447");

 SPECTO manual

SPECTO - 75 - NLS

Secure communication

SPECTO supports HTTP-S and SSL secure transfer and authentication by certificates.

HTTP-S

Secure socket layer is fully supported in SPECTO. An URL specified with the ‘https:’
protocol or typed as ‘HTML/HTTPS’ in the type field will be accessed using the HTTP-S
protocol.

Secure socket layer (‘ssl’)

Secure socket layer is fully supported in SPECTO. An URL specified with the ‘https:’
protocol or typed as ‘HTML/HTTPS’ in the type field will automatically accessed using ssl
encryption.

Authentication by certificates

SPECTO supports authentication by certificates. In the default configuration all certificates
will be accepted (acknowledged positive), an user exit allows for filtered acknowledges. If
the ‘keytool’ program is available for SPECTO, all received certificates will be stored in the
key store.
The key store is located in file ‘specto’ in the root of the file system; its username and
password is ‘specto’.

Location of the certificates keystore

The JAVA keystore is usually implemented in file cacerts located in the security
folder of folder lib in the java home directory. The java home directory is available via
property JAVA_HOME and can be determined by the SPECTO ‘pr’ command.

Processing the certificates keystore

All processing is performed by the command line utility keytool located in the JAVA
bin directory (usually not in the computer’s search path).

Official documentation of keytool:
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

Most common parameters:
Parameter Description
A command like -list, -genkeypair or -importcert
-keystore specifies the keystore, for SPECTO cacerts in the JRE’s

 SPECTO manual

SPECTO - 76 - NLS

lib/security folder should be used (JAVA often also uses the file
.keystore in the user’s home directory).

-storepass Password of the keystore. The default password is ‘changeit’,
SPECTO does not change this password nor requires a different
password, it id howevere recommended to use a secure password.

keytool -list -keystore ..\lib\security\cacerts

Examples (assuming a windows environment, with the command shell in the JAVA
HOME directory):
Command Explanation
bin\keytool -list -storepass changeit -
keystore lib\security\cacerts

List all certificates in the store. Option -v
would yield a more detailed list.

bin\keytool -printcert -file
lib\security\<filename>.cer

Print the content of a certificate.

JAVA-Configuration of SSL and certificates

Properties:
javax.net.ssl.keyStore : Location of the Java keystore file
containing an application process's own certificate and private key. On Windows, the
specified pathname must use forward slashes, /, in place of backslashes.

javax.net.ssl.keyStorePassword : Password to access the private key from
the keystore file specified by javax.net.ssl.keyStore. This password is used
twice: To unlock the keystore file (store password), and to decrypt the private key stored in
the keystore (key password).

javax.net.ssl.trustStore : Location of the Java keystore file
containing the collection of CA certificates trusted by this application process (trust store).
On Windows, the specified pathname must use forward slashes, /, in place of backslashes,
\.
If a trust store location is not specified using this property, the SunJSSE implementation
searches for and uses a keystore file in the following locations (in order):
$JAVA_HOME/lib/security/jssecacerts
$JAVA_HOME/lib/security/cacerts

javax.net.ssl.trustStorePassword : Password to unlock the keystore
file (store password) specified by javax.net.ssl.trustStore.

javax.net.ssl.trustStoreType (Optional) : For Java keystore file format, this
property has the value jks (or JKS). You do not normally specify this property, because its
default value is already jks.

javax.net.debug : To switch on logging for the
SSL/TLS layer, set this property to ssl.

Link to official documentation:
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#Customization

 SPECTO manual

SPECTO - 77 - NLS

 SPECTO manual

SPECTO - 78 - NLS

Multiple network interfaces

SPECTO supports direction of network traffic through different network interfaces on the
host system. This is accomplished by using the ‘route’ capabilities of the host system.

Configuration

The SPECTO ‘ni’ command shows the available network interfaces of the host system.
The SPECTO ‘route’ command shows and maintains the current routing configuration.

 SPECTO manual

SPECTO - 79 - NLS

‘Clustered’ storage

SPECTO supports permanent storage of any data (especially of any size and structure)
under a key and an optional time key in the SPECTO cluster.
The clusters are primarily used via the SPECTO scripting languages. E.G. a PAU script
may write the complete HTML of a monitored site to the cluster for later inspection.

Configuration and maintenance

The SPECTO ‘cluster’ is used for cluster management.

The available clusters are listed using the ‘cluster list’ command :

Script

The clustered storage is available for SPECTO scripts through the methods listed below :

Object[] dirCluster (String key, long timeFrom, long timeTo)
String readCluster (String key, long time)
String readCluster (String key)
int writeCluster (String key, long time, String data)
int writeCluster (String key, String data)
int writeClusterAtNow (String key, String data)
int deleteCluster (String key, long time)
int deleteCluster (String key)

Sample code

// script=js
specto.writeClusterAtNow(“demo”, “test”);

 SPECTO manual

SPECTO - 80 - NLS

SAP R/3 URLs

Instead of an web server it is possible to monitor a SAP R/3 system. Most RFC capable
function module can be called. Simple import and export parameters are supported as
parameters; internal tables are not supported.

The syntax for the URL is
with server logon:
r3:<hostname>:<systemnr>:<userid>:<password>:<client>:<language>/<function>

with group logon:
r3:<hostname>:<systemnr>:<userid>:<password>:<client>:<language>:<message
server>:<system name>:<logon group>/<function>

Userid and password can also be transmitted using the SPECTO parameters of type
‘username’ and ‘password’; in this case the corresponding above fields may be left empty.

Example :

The import parameters of the function are defined as SPECTO parameters; the export
parameters of the function can be checked using SPECTO’s content mechanism. The form
of then content field is ‘[type:]parameter_name;value’ (e.g. ‘INT:RESULT;00003884’).
‘type’ may be any of BCD, BYTE, CHAR, DATE, FLOAT, INT, ITAB, NUM, TIME,
WCHAR and WSTRING; the default is CHAR. For the parameters the complete
SPECTO functionality (variables and external computed values) is available.

Example :

The example shown in the example above calls the (implemented for this) function
‘ZZZSPECTO_PING’ on system 192.168.73.230, system number 17 in client 000 after
logging on with user ‘developer’ and password ‘nls’ using English as dialogue language.

The return parameter ‘RESULT’ is checked against the value ‘00003884’.

The primary intent of the SPECTO R/3 functionality is not to monitor R/3
implementations, but to check if, as a result of a chain executed on an electronic commerce
implementation, an appropriate result has appeared in the attached R/3 system.

 SPECTO manual

SPECTO - 81 - NLS

Message services

In complex application environments components are often coupled asynchronously by
using message queues. SPECTO can access and generate messages in any message queue
system with a JMS front-end. There is additional support for the following message queue
service implementations :

• PROGRESS software ‘sonicMQ’
• IBM ‘MQseries’

SPECTO supports ‘point-to-point’ and ‘publish and subscribe’ models. In receiving
messages, ‘reply mode’ is possible.

Format

The syntax for the URL is :
jms[(<implementation>)]-<model>://<hostname>/<queuename>: <message-
mask>:<accesstype>[:<username>[:<password>]]

with ‘implementation’ currently being ‘sonic’ or ‘mqseries’; ‘model’ being ‘p2p’ or ‘pas’;
access type’ being ‘browse’ (non changing); ‘retrieve’ (removing the message from the
queue) or ‘set’ (writing a message into the queue).
Username ans password may also be supplied as parameters (parameter types ‘username’
and ‘password’).

Reading / retrieving messages

Messages are returned as one block of XML formatted text with the following title lines
added at the beginning by SPECTO :

<from> sender identification </from>
<message-id> message id </message-id>
<sent> timestamp </sent>
<jms-message>

and the following line added at the end :

</jms-message>

If no message is available, an empty result is returned. If multiple messages are matching
the message mask, the message with the highest priority and then the earliest date returned.

Note: applications should parse for the ‘<jms-message>’ tag since it is likely that more title
tags will be introduced in future releases.

Sending messages

Messages are sent using SPECTO parameter mechanism. The following parameters,
according to the JMS specification are available :

‘type’ message type (eg. ‘PERSISTENT’)

 SPECTO manual

SPECTO - 82 - NLS

‘priority’ priority (0-9, 4 as default)
‘from’ sender identification
‘id’ message identification
‘expiration’ message expiration (in milliseconds, 0=’forever’)
‘content’ message content

Any other parameters are set as JMS properties of type text.

Extensions for PROGRESS software ‘sonicMQ’

• Hierarchical name spaces are supported
• Distributed transactions are supported.). This is available with SPECTO rel. 1.62.
• The management api and the special ‘dead message’ queue (DMQ) is supported.

Management API

By setting the attribute ‘JMSSonicMEnable’ to ‘true’ a separate listener is started which
collects any event entries from the sonic system and the sonic DMQ and makes it available
in the variables ‘_JMSSonicEvents’ and ‘_JMSSonicDMQ’.

Extensions for IBM ‘MQseries’

Non-JMS queue types can be specified (queue names according to mq-series specification).
This is available with SPECTO rel. 1.62.

Examples

jms(mqseries)-p2p://central/order-queue:order4711:browse

 SPECTO manual

SPECTO - 83 - NLS

Email fetch

In b2b environments components are often not coupled directly to the ERP system but
create and send emails with the reulst of their processing (e.g. an order entered by a
customer using the web application is sent as an email to the order entry department).
SPECTO can access email mailboxes and check for or retrieve mails matching certain
selection criteria.
In addition SPECTO can generate mails.

Retrieving emails

The syntax of the URL for receiving of emails is :
smtp:read://<mailhost>/<subject>:<accesstype>[:<username>[:<password>]]

(as an alternative instead of an URL the keyword ‘getmail’ can be used.)

With ‘accesstype’ being ‘browse’ or ‘retrieve’. Username and password may also be supplied
as parameters (parameter types ‘username’ and ‘password’).

The following parameter types are supported :

‘server’ the email server name
‘title’ the prefix of the subject to be searched for

Example :

Sending emails

Sending of emails is equivalent to the retrieving of emails. The syntax of the URL for
sending of emails is :
smtp://<mailhost>/<subject>:<accesstype>[:<username>[:<password>]]

The following additional parameter types are supported :

‘receivers’ a list of email addresses, separated by a ‘;’
‘ccreceivers’ a list of email addresses, separated by a ‘;’, to be sent
 as ‘cc:’
‘content’ the body of the message

 SPECTO manual

SPECTO - 84 - NLS

Note: SPECTO can access email mailboxes using the POP3 or IMAP protocols, emails are
sent using the SMTP protocol. In order for receiving and sending of emails to work, the
corresponding attributes must be configured accordingly (see ‘Notifications’ and
‘SPECTONet’).

Ramp mode

For load measurements it may be required to start a chain processing smoothly to allow the
measured system to ‘warm up’. SPECTO assists this using ‘ramp mode’. ‘ramp mode’ is
activated for a chain by specifying a negative period for the chain repetition time.
If ‘ramp mode’ is activated the interval at this the chain is repeated starts with ten times the
(positive) value defined in the period parameter and is decreased to 75% of its value after
each chain processing until it reaches the defined period.

An example : If the chain’s period is defined as 10 seconds and ramp mode is
activated (ergo –10 is entered in the period field) there will be a 100 second wait time
between the first and the second iteration of the chain, followed by a 75 second wait time,
then 56 seconds, 42 seconds, 32 seconds, 24 seconds, 18 seconds, 13 seconds and finally 10
seconds.
The 75% divider can be modified by setting the ‘RampIndex’ Attribute. The divider is
defined as RampIndex/(RampIndex+1); the default for ‘RampIndex’ is ‘3’. (75% = 3 /
(3+1)).

 SPECTO manual Reporting

SPECTO - 85 - NLS

Reporting

Built in reporting

SPECTO supports a textual and a graphical display of the results of its operation. (see
chapter ‘commands’ for a detailed description of the commands parameters).

Navigating within reporting data :

The reporting overview (‘ro <days-back> [<chained>]’) command provides an
entry point into SPECTO reporting. Following the ‘data’ and ‘graphic’ links display the
corresponding data accordingly using standard settings.

For having more control about the selection and display of the data it is recommended to
use the navigation menu, entries ‘results – measured data – xxx dynamic’ and specifying the
query as shown below :

It is possible to enter a date value (’12.05.’, ’13.05.2002’, ‘04/12/2002’, …) instead of the
‘days back’ count. If type div 10 is not zero, then a download link will be displayed.

The exact parameters of the underlying commands (‘rg’ and ‘rh’) are described in chapter
‘commands.

Reporting SPECTO manual

SPECTO - 86 - NLS

Textual reporting :

Example with one measurement per cell :

 …

(This output was generated using a “rh ‘12.5.’ 1 10 0 23” command.)

The links (‘prev. day’, ‘next day’, …) may be used to navigate within the results without to
return to the reporting screen overview.

Textual reporting may be enhanced using the following ‘named’ parameters :

name description example
dispref Whether to display measured reference values. Allowed values

are ‘true’ and ‘false’; the default is ‘true’
dispref=false

colmin Additional column which displays the minimum result of the
line. Allowed values are ‘true’ and ‘false’; the default is ‘false’.

colmin=true

colmax Additional column which displays the maximum result of the
line. Allowed values are ‘true’ and ‘false’; the default is ‘false’.

colmax=true

colsum Additional column which displays the sum of all result of the
line. Allowed values are ‘true’ and ‘false’; the default is ‘false’.

colsum=true

colavg Additional column which displays the average result of the
line. Allowed values are ‘true’ and ‘false’; the default is ‘false’

colavg=true

Example : rh 0 0 10 dispref=false colavg=true

 SPECTO manual Reporting

SPECTO - 87 - NLS

Graphical reporting :

Overview of a day. It is possible to navigate within the data area in daily steps or switch to
the data display using the buttons below the graphic.

A click in into the line area zooms into the selected hour (see picture below), a click into
the horizontal scale area zooms in the corresponding ‘five-hour’ area.

Detailed view (on hour base) :

Pointing on an measure mark displays the corresponding value. Clicking the ‘refresh whole’
button returns to the display of the whole day.

Active notifications are displayed as a horizontal bar on the top end of the image; the
thickness of the bar indicates the number of active notifications (not visible in the
examples above).

Reporting SPECTO manual

SPECTO - 88 - NLS

Script based reporting :

The reporting engine is also available for SPECTO scripts. This allows for highly
customized graphical reporting.

Variable elements :

 Number of graphics
 Height and width of the graphics
 X and y axis legends
 Combination of URLs of different chains
 Computed (vs. measured data)

The configuration is done within a script by specifying the parameters of a structure (type
‘ReportConfigEntry’, combining multiple such structures to an arryay, one or multiple calls
to the ‘specto.reportGra()’ method.
Sample scripts are available within the SPECTO on-line support system.

Extracts of sample:

…
var gras = new Array(2);
gra = specto.getReportConfigEntry();
gra.chainId = chainId;
gra.daysBack = 7;
gra.sizeX = 395;
gra.sizeXLegend = 100;
gra.sizeY = 200;
gra.yMax = "100%";
gra.colorBkGnd = 0x7f7f7f;
gra.colorBkGndLegend = 0x1f7fbf;
gra.colorLines = new Array(0x3f3f3f, 0);
gra.arrowSize = 2;
gra.markerRadius = 2;
gra.chartBorder = 40;
gra.footer = "Block1";
gras[0] = gra;
…
page += specto.reportGra(-1, 1, 5000, 10, 4, gras, false);
…

 SPECTO manual Reporting

SPECTO - 89 - NLS

Summary reports :

Overview of a month/week :

A month/week-wise overview of measured results can
be generated for any chain using the ‘rm’ / ‘rw’
commands (rm <months_back> <chain> [[<type>]
limit], rw <weeks_back> <chain> [[<type>] limit)
or the ‘monthly overview’ / ‘weekly overview’ entries
in the ‘results – measured data’ section of the menu.
Using the menu, the command parameters have to be
specified in the dialog shown on the right. The selected
month is specified in relation to the current month.
Currently only type 0 is implemented.

The resulting display consists of a bar for every URL on every day of the
month indicating the range of measured delay times, and a white spot
showing the average delay time.
Data exceeding the selected scale will be marked with a red indicator on
the top; and measurements with errors are marked with a red indicator
on the bottom of the bar.

The display may be scaled and exported (in SVG format) using a right
mouse button click in the display area.

Example (month based overview) :

.

With the links below the graphic it is possible to navigate on a month base and to scale the
displayed data.

Reporting SPECTO manual

SPECTO - 90 - NLS

Reporting of notifications :

Status counters

The status of the notification counters is displayed using menu entry ‘Results’ –
‘Notifications’ – ‘status counters’ or by using command ‘no s’ :

For any entry the status counters, the threshold limits and the activation status is shown.
Direct links allow for navigation to the client or chain.

Active notifications

Currently active notifications are displayed using menu entry ‘Results’ – ‘Notifications’ –
‘active’, or by using command ‘no l’ :

Direct links allow for navigation to the client or chain, the documentation, and to delete
the notification.

Past notifications

Historic Notification events are displayed using menu entry ‘Results’ – ‘Notifications’ –
‘History’, or by using command ‘rn <days_back> <maxlines> [<chain>]’ :

Direct links allow for navigation to the client or chain, and the documentation.

 SPECTO manual Reporting

SPECTO - 91 - NLS

Generation of reporting documents

For off-line reporting to non-technical persons SPECTO supports the generation of
predefined PDF-formatted documents. Such documents may be generated and viewed on-
line, or can be automatically generated and distributed in the background when coupled
with SPECTO script and batch processing.

On-line generation of PDF documents

The command pdf <type> <subtype> <chain> <elements_back> <limit> … is
available to generate and view PDF based reports online.
Type : 0=month, 1=week, 2=day
SubType : 0=overview summary, 1=all measurements

Background generation of PDF documents

Both SPECTO script implementations allow the generation of PDF formatted reports
analog to the ‘pdf’ command described above (see the script chapters for more details).

Example

Execution (‘pdf 0 0 0 0’) results in a ‘link’ screen, following the link displays the PDF
document in the browser :

Depending on the plug-in used, the generated pdf document can be printed or saved to
local disk from here.

Reporting SPECTO manual

SPECTO - 92 - NLS

User reporting

SPECTO stores all results in tables of the underlying relational database. There they can be
accessed with common methods and the data can be formatted using office (eg. MS Excel)
or tools for statistical analysis (e.g. SAS).

Example database ODBC definitions for MS Access are provided together with the
SPECTO package.

The layout of the primary reporting table (table ‘specto.results’) is :

 "node_id" integer not null,
 "specto_id" integer not null,
 "client_id" integer not null,
 "chain_id" integer not null,
 "url_id" integer not null,
 "datestamp" date not null,
 "timestamp" time not null,
 "result" char(1),
 "delay" integer,

The ‘delay’ column is in milliseconds. Negative numbers denote problems; they are further
explained in the ‘result’ column.

The client_id, chain_id and URL_id columns are internal keys and are referenced in tables
‘clients’, ‘chains’ and ‘urls’.

The result column is coded as :

If the result column contains a number, the current
entry is not a measurement but a message from the
notification engine and the result column contains
the number of active notifications at that moment.

Notes :

 A message starting with ‘okay’ denotes a
successful URL fetch.

 A message ending with ‘error’ denotes an
URL fetch resulting in an error.

 The ‘command’ message denotes the
execution of a SPECTO command (e.g.
‘goto’)

 The ‘reference’ message denotes an
additional measurement to a reference URL
(see chapter reference measurements).

 SPECTO manuals Reporting

SPECTO - 93 - NLS

Master console

The master console is a highly configurable summary of all major SPEPTO data. It
refreshes at selectable intervals and is started using the navigation menu or using the ‘mc’
command :

Example view :

The console can be configured using the ‘mcc’ command :

The three columns and five rows can be customized with the several modules of the master
console.

Reporting SPECTO manual

SPECTO - 94 - NLS

Available modules :

Module Function
Title Displays the SPECTO title
Time Displays the current date and time (of the SPECTO engine)
Health Displays performance statistics about the SPECTO engine
Processes Displays running threads (multiple ‘process’ windows may be opened)
Graphic Displays graphical view of one process. The process may be selected in

the ‘process’ module
Status A two field, color coded quick check of the status of SPECTO engine

and running processes.
Users A list of current logged on users and sessions
Refresh A form to adjust the console refresh rate
Log The last 10 log entries
Script One of three Scripts which will be executed at each iteration of the

console. The result of the script is displayed in the window.
Variable One of three predefined variables which’s content is output in the

window.

Client console

The customer console provides for a highly configurable ‘portal’ for a user. It consists of a
subset of the functionality of the ‘master console.

The client console may be accessed via the navigation menu or using command ‘cv’.

 SPECTO manuals Reporting

SPECTO - 95 - NLS

Desktop

The desktop is a graphical, self refreshing display of the current
status of selected chains, and is activated using the navigation
menu or by issuing a ‘desk’ command. (Note: Currently only IE
>= 5.5 with ActiveX enabled is supported).

The desktop can be used in ‘active’ mode (menu ‘show and change’ /
command ‘desc s’), where the icons may be dragged to new
positions, or in ‘view only’ mode (menu ‘show’ / command ‘desc
v’) in which it is not possible to rearrange the icons.

On the screen larger icons represent chains; for chains of the current client to be shown on

the desktop they have to be enabled via the ‘for desk’ checkbox in the chain
configuration screen. The status of every chain is identified by a color according to the
color legend shown on the right hand side of the screen.

Aside the chain-based icons, ‘meta’ icons can be defined and linked to groups of chain-
icons. Meta icons inherit the status of the linked chain icons. (In the example below the
meta icon ‘Meta2’ is colored yellow (‘warnings’) because there is at least one yellow icon
linked to it). Chain icons may be dragged on top of each other to minimize desk space; the
meta icon will still reflect the over all status of this chain group.

The desktop’s configuration and appearance is customized via attributes (command ‘cu
desk’); a more elegant solution will be provided in a future release.

Reporting SPECTO manual

SPECTO - 96 - NLS

Portal

The SPECTO Portal is a successor to the current consoles and is available using the
‘portal’ command.

Notes about the SPECTO Portal :

 The portal was introduced to the SPECTO gui with release 1.81 as a preview; it is
still under development and should be considered as a ‘preliminary’.

 The portal implementation relies on ‘avant garde’ capabilities of the web browser;
only the latest releases of Internet explorer and Netscape/Mozilla will be able to
support the portal correctly. (Apple Safari will be adapted later).

 The ‘portal’ command differs from other SPECTO commands in that it opens a
new browser window.

 The task of the portal is to retain an overview about that is going on in a SPECTO
instance; maintenance has still to be done using the ‘classic’ gui.

The basic arrangement of the portal consists of :

 The ‘views’ (left hand side squares, e.g. ‘log’)
 The ‘windows’, arranged in ‘places’ (four in the example above)
 The data ‘categories’ (type ‘cat’)

Operation within the portal is primarily via drag&drop:

 Drag a view or a window to a place
 Drag a object to a window

 SPECTO manuals Service level agreements

SPECTO - 97 - NLS

Service level agreements

Overview

SPECTO supports definition and execution of service level agreements (‘SLA’) on a chain
base. SLAs are formatted as PDF type documents and may be generated manually on
request or automatically and distributed via electronic mail.

SLAs for chain measurements are built of sets of rules for computing ‘fullfillment’
percentages. The rules are mainly weighting factors for individual aspects as which URL
‘time of day’, ‘day of week’, ‘degree of deviation’.

Based on the rules a SLA contract can be generated. Such a contract may be used as
formal document e.g. between provider and customer of a service.

Based on the rules and the executed measurements a SLA report can be generated for a
certain timeframe (a week or a month). The report may be enhanced with comments to
detail a particular event.
The report summarizes the selected measurements graphically and by numbers. Also a daily
and a total fulfillment is computed. Optionally, based on the fulfillment result, penalties
may be computed.
Such a report may be used for regular quality meetings e.g. between provider and customer
of a service.

Enabling management of service level agreement :

Within customizing menu ‘service level agr.’ Set the flag ‘sla.cust.enabled’ to ‘true’
for all (-1) or selected clients. There is no restart required.

Customizing of service level agreement management :

The look and feel of SLA reports and contracts may be customized using standard
SPECTO customizing : Menu ‘customizing – PDF formatting’. (attribute
grouping ‘pdf.’).

Note : To ease using SPECTO’s SLA module, an ‘explanation by example’ is included at
the end of this chapter.

Service level agreements SPECTO manual

SPECTO - 98 - NLS

Definition of a service level agreement :

The SLA editor is available via command (‘sla e <chained>’) or the ‘sla’ link in the
chain configuration screen (right hand side of the ‘doc’ link).

Values are stored on execution of the ‘Save’ button.

The ‘Comment…’ button switches to the commenting form (described later).
The ‘gen. report’ and ‘gen. contract’ buttons switch to PDF generation of reports and
contracts (described later).

The ‘URLs…’ button switches to the maintenance of URL based weighting :

 SPECTO manuals Service level agreements

SPECTO - 99 - NLS

Working with service level agreements :

The SLA functionality is available via the ‘service level
agreements’ menu in the ‘results section or by using the
‘sla’ command (‘sla ?’ for help).

The common steps are :

i. Defining an SLA and generating the associated
SLA contract (once).

ii. Commenting SLA performance and generating
SLA reports (per time period)

Optionally (as an alternative to step ii. from above) :
i. Automating the report generation and

distribution by the SPECTO batch processor and
an associated script program (see the NLS
support area for sample scripts).

Listing all defined service level agreements :

A list of he defined SLAs within the current client is available via command (‘sla l’) or
the ‘list’ entry within menu ‘service level agreements’.

Maintaining comments to the current status of a service level
agreement :

The SLA comment editor is available via command (‘sla c <chained>’), the
‘comments’ entry within menu ‘service level agreements’ or via the ‘list’ screen (see above).

Note : Previous comments are not stored. Any SLA report is generated with the current
comment set.

Service level agreements SPECTO manual

SPECTO - 100 - NLS

Generating a service level agreement report :

SLA reports are generated via command
(‘sla p <chained> <type>
<subtype> <time_back’), the ‘sla report
(PDF)’ entry within menu ‘service level
agreements’ or via the ‘list’ screen (see above).

After the ‘Excecute’ button the SLA is computed and formatted as a PDF document. A
link to the PDF document is generated :

The document may be reviewed online or printed or saved locally.

The first page consists of a graphical view similar to the normal reporting but enhanced
with the SLA overview and the comments section. The second page displays the
week/month based detail table of SLA performance.

Within the table, the day entries have the following meaning:

 first line is error weight and fulfillment percentage;
 second line is number of time limit deviations, number of errors, overall number of

measurements.

 SPECTO manuals Service level agreements

SPECTO - 101 - NLS

Error weight and percentage computation

A SLA report displays two values :

 Error weight. Weighted sum up of all errors over the reported period. Ranging
from -10.0 to +10.0; the higher, the worse. 0 stands for ‘reaches the norm’.

 Fulfillment percentage. Range from 0 to 200%, the higher the better.

The SLA computation consists of two steps.

 First all the raw measurement data is aggregated on a per url/hour basis, and the
corresponding error weight and fulfillment percentage is computed. (this
intermediate data may be displayed using command ‘sla r 0 chain
monthsBack’ command, but this is not necessary during normal work).

 The second step aggregates the above data on day-by-url, day-by chain and week or
month basis. This data is shown in the SLA report.

Error weight computation

The error weight is computed based on the amount of communication errors (e.g.
protocol), the amount of content errors and the deviations from the expected delay time.

Basic to the understanding of the SLA computation of time deviations is the concept of the
‘norm’; this is a delay which is considered as ‘value to be achieved’; it is computed by a
percentage (default is 50%, customizable with attribute ‘sla.cust.normprc’) of the urls
‘toolong’ value (default ‘toolong’ is 2000 milliseconds).

There are several algorithms (‘Steps’, ‘Linear’, ‘Custom’) for delay time based error weight
computation :

If the measured delay is below norm a negative error weight is computed by :
ErrorWeight(‘Linear’) = (Norm–Delay) / Norm * WeightBelowLow
ErrorWeight(‘Steps’) = 0.5 * WeightBelowLow

If the measured delay is between norm and toolong no error weight is set.
ErrorWeight(‘Linear’) = 0.0
ErrorWeight(‘Steps’) = 0.0

If the measured delay is between toolong and timeout :
ErrorWeight(‘Linear’) = (Delay-TooLong) / TooLong * WeightAboveLow
ErrorWeight(‘Steps’) = 0.5 * WeightAboveLow

If the measured delay is above timeout :
ErrorWeight(‘Linear’) = (TimeOut–TooLong) / TooLong * WeightBelowLow
 + (Delay–Timeout) / TimeOut * WeightAboveHigh
ErrorWeight(‘Steps’) = 0.5 * WeightBelowLow
 + 0.5 * WeightAboveHigh

The individual error weights from the communication, content and delay error weights are
merged together by multiplying them with the appropriate ‘error class’’ weights.

This hour-based error weights are weighted by the WeightByHourOfDay and form the
day-by-url error weight and fulfillment percentage.

Service level agreements SPECTO manual

SPECTO - 102 - NLS

Fulfillment percentage computation

The error weight multiplied with the ‘w2p’ (‘weight to percentage’) factor (default is 25%,
customizable with attribute ‘sla.cust.w2p’), subtracted from 100% and then limited to
0 – 200%.

‘Result of Day’ computation

The days error weights of the individual URLs are weighted according the WeightByURL and
form the overall day error weight and fulfillment percentage.

‘Result of Week / Month’ computation

The individual days error weights are weighted according to the WeightByDayOfWeek and
form the overall week or month error weight and fulfillment percentage.

Penalty computation

The overall fulfillment percentage is (optionally) used to compute a penalty. Penalties may be
based on money (then the currency value is used) or on any other crediting scheme (e.g.
‘points’). Penalty values may be transferred from one reporting period to the next. The
penalty value is computed by multiplying the overall error weight with the penalty factor.

Custom computation of error weights, fulfillment percentages and penalty values

The algorithms described above may be overridden by custom computations; e.g. to take
response time during incidents into account.

Such algorithms have to be developed using the SPECTO’s engine Javascript language and
are called by the SLA modules exit interface. Several sample scripts are available from NLS
upon request.

 SPECTO manuals Service level agreements

SPECTO - 103 - NLS

Generating a service level agreement contract :

SLA reports are generated via command (‘sla o <chained> <type> <subtype>
<time_back’), the ‘sla report (PDF)’ entry within menu ‘service level agreements’ or via
the ‘list’ screen (see above)
Sample :

Service level agreements SPECTO manual

SPECTO - 104 - NLS

Custom SLA reports and SLA contracts :

During creation of SLA documents the design and the computation can be enhanced
through a user maintained script which is called from several places during the document
creation process. The name of the script follows the convention
‘sla.chain.<physical_chain_id>.script’ , e.g. ‘sla.chain.64.script’.
The physical chain id may be determined using the ‘dpi <chain_id>’ command.
If for a given SLA no script is found, the default values and computation algorithms are
used.

Any such callback (‘event’) is identified by an event name which is passed as the first
parameter of the script call. Depending on the event, other arguments are included in
addition.
The script may return values through an XML formatted record.

Sample script :

//script=js

var persist = specto.getSessionPersistence();
var sla = specto.getSLA();
var event = specto.args[0];

// log parameters, event and first parameter
specto.log("sla: " + specto.args.length + ", " +
 event + ", " + specto.args[1]);

// ‘start’ event
if (event=="start") {
// save a parameter to be used by other events
 persist.put("file", specto.args[1]);
// set the contract penalty currency
 sla. slaPenaltyCurrency = "Rubel";
// return new values for center title and subtitle
 "<title_center>Jri</title_center><subtitle>Kaana</subtitle>";
}

// before the URL list is processed
else if (event=="beforeURLlist") {
// demo how to get parameters set by other events
 specto.log("sla: back=" + persist.get("file"));
// returns nothing
 "y";
}

// before the SLA values are output
else if (event=="CompTotal") {
// output the pre-computed day values weights
 specto.log("sla: CompDay: " + "a");
 for(i=0; i<30; i++) {
 specto.log(i + ":" + sla);
 }// return new total value
 "<total_percentage>123%</ total_percentage>";
}

 SPECTO manuals Service level agreements

SPECTO - 105 - NLS

The SLA structure

The method ‘specto.getSLA()’ is available to get a reference to the current instance of
the SLAManager. This can be used to set further details of the SLA computation process,
e.g. the weighting factors.

The exact structure of the instance can be inspected by the ‘struct’ command.

List of available events for SLA enhancement

SLA callback event Description
start At start of the SLA generation before anything is written into

the PDF document.
beforeURLList Before the list of URLs is written into the document. Used to

modify the list itself and its appearance
SLAParams Before SLA specific parameters are output.
CompDay After computation of one day (but before output)
CompTotal After total computation (but before output)

SLA event ‘start’

Input
parameter

Description

1 Name of the PDF file to be generated
2 Type of the report
3 Subtype of the report
4 Primary chain id
5 Elements (days, weeks, months) back
6 Limit for graphical display (-1 is automatic computation)

Output parameters Description
<title_left> Left title of the header line of each page
<title_center> Center title of the header line of each page
<title_right> Right title of the header line of each page
<author> ‘Author’ attribute of the PDF document
<creator> ‘Creator’ attribute of the PDF document
<title>
<subject>

SLA event ‘beforeURLList’

Input
parameter

Description

1 Array of selected chain names
2 Array of selected URL Ids
3 Array of selected URL names

Output parameters Description

Service level agreements SPECTO manual

SPECTO - 106 - NLS

<add> Add an URL to the list
<remove> Remove an URL from the list
<rename id=…> Rename an URL

SLA event ‘SLAParams’

Input
parameter

Description

1 Settings modified (true/false)

Output parameters Description
%to be specified% Several available

SLA event ‘CompDay’

Input
parameter

Description

1 numURLs
2 numDays

Output parameters Description
<day_percentage>

SLA event ‘CompTotal’

Input
parameter

Description

1 numURLs
2 numDays

Output parameters Description
<total_percentage> The overall fulfillment percentage

The following structures are available within the SLAManager instance; they are used for
the SLA report table and can be set during events ‘CompDay’ and ‘CompTotal’ events :

SLAEntry slaEntries [numURLs][24][numDays];
SLAEntry slaUDEntries [numURLs][numDays];
SLAEntry slaDEntries [numDays];
SLAEntry slaOverallEntry;

The type SLAEntry is defined :

 int delay;
 int delayReference;
 int count;
 int countE;
 int countT;
 float weight;
 float percentage;

 SPECTO manuals Service level agreements

SPECTO - 107 - NLS

Generating a chain documentation :

A complete documentation of a chain may be generated via command (‘sla o
<chained> <type> <subtype> <time_back’), the ‘sla report (PDF)’ entry within
menu ‘service level agreements’ or via the ‘list’ screen (see above)

The chain documentation is intended as addendum for an SLA contract but may also be
used independent from SLA management for other documentation purposes.

The chain documentation consists of one title page describing the chain, and one detail
page for every URL.

He chain page consist of the chain documentation, the PBT, PBC and PAC scripts and the
defined notifications.

The URL pages consist of the URL parameters, content check definitions, the
documentation, and the PBU and PAU scripts. Also an image of the page is included (note
that the image generated internal HTML renderer can only give a rough view of the page).

Sample :

Note that the design of the report may be modified in the SLA customizing.

Service level agreements SPECTO manual

SPECTO - 108 - NLS

Introduction by example to service level agreements

This chapter explains SLA management by an example. To be able to work with the
example it is necessary to define a sample chain and import the supplied sample data.

Generating the sample chain :

Define a chain with a meaningful chains name (e.g. ‘SLA demo’), one dummy url (e.g.
‘http://www.nls.de’), retaining the default parameters (too long of 2000 milliseconds
and timeout of 3500 milliseconds. Maintain some useful documentation.
This chain is only used as a container for the test data, it will not be run.

Import the demonstration data :

Transfer the supplied file ‘slatest.csv’ to the SPECTO file area using menu
‘Maintenance – Imp./exp. (XML) - upload to Specto…’.

Import the file using the command csvi slatest.csv chainid_or_name. (e.g.
csvi slatest.csv ‘SLA demo’). The sample data will be loaded into January 2005
of the specified chain.

Note: The file contains data for one month (January 2005) with 100 equally spread entries
per day. Most days consist of equal entries with a delay of 1000 milliseconds, but days two
to eight contain different values to show how SLA weights are being computed. You’ re
encouraged to look at the slatest.csv file to get familiar with the scenario.

Verify the loaded test-data :

Via menu ‘Results – monthly overview’ the
selection form is shown. Enter the correct ‘months back’
value to reach January 2005 (e.g. 1 if in February), your
chain name or chain id, and 10000 as limit. The resulting
graphic should look like the one shown on the right
(picture only partially shown).

The first, the ninth day and all days after, show the exact
1000 milliseconds measurements in those days. The
second to fourth day also show the constant values at
1800, 2500 and 4000 milliseconds respectively and fifth
day has the 1000 to 6000 milliseconds range with the
average around 3500. Sixth day is similar to the first day
but has 10 % content errors (indicated by the red bar at
the x-axis). Seventh day has measurements below 1000
milliseconds and eight day is a combination of everything.

 SPECTO manuals Service level agreements

SPECTO - 109 - NLS

Customize SLA :

Check that SLA is enabled in your client: Via menu ‘Customizing – Service level
agr.’; the attribute ‘sla.cust.enabled’ should read ‘true’.

Edit chain’s SLA definition :

Go to the definition of your chain and follow the ‘SLA’ link:

The SLA definition panel for the chain opens and shows the default entries for new chains.

For a first evaluation, please set all
the weights in the ‘weighting per
week day’ and ‘weighting per hour’
blocks to ‘1.0’. Also enter some
meaningful data in the ‘description’
and ‘in charge…’ fields; then save
the configuration.

Generate a SLA report :

From the definition form, execute the ‘gen. report’ button. (note: the report is always
executed for the previous month; because we want to see the January 2005 data, the ‘gen.
report’ buttons only works in February 2005. Otherwise use command ‘sla p chain
10 0 monthsBack‘ (e.g. sla p 'SLA demo' 10 0 2 if in march).

The PDF representation of the SLA report will be created.

Follow the ‘View result as PDF’ link; the PDF will display in the browsers PDF plug-in.
The report consists of two pages; the first page displaying the chain’s master data, the
summary graphics and the SLA comments.

Service level agreements SPECTO manual

SPECTO - 110 - NLS

The SLA weight and percentage computation is shown on the second page:

Looking at day one, the error weight is 0,00 (and
therefore the fulfillment is 100%) because all entries of
that day are at 1000 milliseconds which is exactly the
‘norm’ (50% of the 2000 ‘toolong’ milliseconds).

Day two is also 100 % because all values (at 1800
milliseconds) are below the ‘toolong’ mark.

Day three with all the measurement values at 2500 (500
above the ‘toolong’ mark) computes to an error weight
of 0.25 (500 / 2000) and an fulfillment percentage of
94% (100 – (0,25 * p2w * 100)).

Day four with all values at 4000 milliseconds above the
‘timeout’ mark of 3500 milliseconds computes to 1,04
(1500/2000 + 500/3500*2).

Day five with delay values from ‘norm’ to just below
6000 milliseconds computes to 0,83.

Day six with the protocol errors at 10% of the
measurements computes to a 0,1 error weight (10 * 1 /
100).

Day seven has a negative error weight of 0,20 ((800 –
1000) / 1000) because the values are better than ‘norm’.

Day eight with its all types of irregularities computes to
0.26. 20 of the 100 measurements had errors.

The result columns are identical to the url 0 column
because this chain only has one url. Otherwise it would
show an average on the (weighted by url) values of the
individual urls.

The overall error weight (here 0,073) and fulfillment
percentage (here 98%) is computed as the (weighted by
week-day) average of all days. Note that days without
measurements are ignored.

 SPECTO manuals Service level agreements

SPECTO - 111 - NLS

Fine tuning the report by modifying the SLA definition :

The above configuration only uses weights of 1.0 and the standard algorithm. The
following configurations are common with SLA definitions :

Fine-tuning weights

Above example uses equal weights of 1.0 for every weighting. SPECTO standard is a
reduced weight for weekends.
Action: Apply 0.5 for saturday and Sunday and rerun the report. The error weight on day

02 will decrease because of the reduced weight of that day.

Specifying another ‘norm’ level

Using attribute ‘sla.cust.normprc’ the ‘norm’ level is specified as a percentage of the
url’s ‘toolong’ lower limit. The default is 50%; corresponding to an ‘50’ entry.
Action: Customize 75 and rerun the SLA report: The error weights will decrease because

the norm is now set to 1500 milliseconds instead of 1000 milliseconds as before.

Specifying another algorithm

The weight computation described above is the standard algorithm (‘linear’, field
‘algorithm type’). The following other algorithms are available :

‘step’ : The delay-time weights are not computed linear within the ranges (below ‘norm’,

between ‘norm and ‘toolong’, between ‘toolong’ and ‘timeout’ and above
‘timeout) but are assigned the values -0.2, 0, 0.2, 0.4 (customizable).

‘script’ : During the computation an user defined script is called which computes the

weights with a custom algorithm

SPECTO script SPECTO manual

SPECTO - 112 - NLS

SPECTO script

Overview

SPECTO script is a small scripting language used in several places of the SPECTO engine
to automate processes. Especially, scripts are used to specify the before/after processing of
URLs (‘pbu’/’pau’), chains (‘pbc’/’pac’), threads (‘pbt’) and notifications (‘PBN’).

Also SPECTO scripts can be defined in text areas (see chapter ‘working with text’) and
executed from there using the ‘es <script_name>’ command.

Syntax

A script consists of one or multiple commands; each terminated with a semi colon (‘;’). Any
command is a simple command, an assignment or a conditional command.
Simple command are of the form <command> { <parameter> }
Commands which return values are of the form <variable> ‘=’ <command> {
<parameter> }
Assignments are of the form <variable> ‘=’ <parameter> { <opcode> <parameter> }

Parameters are constants, enclosed in ‘”’ characters, or variables (global variables have to be
prefixed with an underscore ‘_’). A variable name prefixed with ‘&’ is considered a pointer
to another variable.

Tracing

Several levels of tracing may be activated using trace keywords.

Trace keyword function
Tron display the current command.
TronT as above, including parameters
TronV displays assignments to variables
TronT displays the parsed tokens
Troff turn off all traces

Control structures

Conditional execution

‘if’, ‘else’, ‘endif’ are used to separate blocks and execute them dependent from a condition.
Conditions are specified as two parameters and an comparison operator.

If <par1> <op> <par2> ;
 commands…
{ else ;

 SPECTO manuals SPECTO script

SPECTO - 113 - NLS

 commands…
}
endif ;

Supported comparison operators :
‘eq’ / ‘ne’ equal / not equal
‘lt’ / ‘le’ lower than / lower or equal than
‘gt’ / ‘ge’ greater than / greater or equal than

The comparison operator works numerical if possible (both parameters are numeric) or
alphanumerical.

Repeated execution

All statements within a ‘Loop’ ‘EndLoop’ Block are executed continuous until a ‘break’
command is issued.

loop;
 commands…
 if <par1> <op> <par2> break;
 commands…
endloop;

Functions

Functions can be defined using the ‘function’ and ‘endfunction’ keywords. Parameters are
defined with their formal names following the ‘function’ keyword; a result may be returned
using the ‘return’ keyword’.

Example :

// function demo

function myFkt par1 par2;
 debug "inside myFKT";
 debug "first parameter : " par1;
 debug "second parameter: " par2;
 return par1 & "+" & par2;
endfunction;

// main program
debug "start" " of prog";
varf = "bbb";
result = myFkt "aaa" varf;
debug "This Result:" result;

Includes

SPECTO script SPECTO manual

SPECTO - 114 - NLS

Script modules can include other script modules using the ‘include’ keyword. It is advised
(so currently not inhibited) to use included scripts only for the definition of functions (as
libraries) and not to execute code within them.

Example :

// include demo

include "fktlib1";

// main program
// function extFkt is defined in script fktlib1;
extFkt "ccc" "ddd";

Available commands

A command is the basic execution unit of a SPECTO script. Commands may return values
which can be assigned to variables. Also, after the execution of a command the predefined
variable ‘subrc’ reflects the execution status. An execution status of 0 denotes that the
execution performed without errors. Command names are case insensitive.

log { <value> } outputs a console log message.

debug { <value> } outputs a console message during URL ‘one run’ processing.

<var> = attribute <name> reads a SPECTO attribute. For security reasons a ‘_’ prefix is

set before the attribute name (this prevents script commands
from reading standard customizing attributes.

<var> = var { <value> } concatenate the values and treat this as a variable name; returns

the content of this variable.

<var> = perform <value> execute the script stored in text area <value>.

<var> = inline <value> execute the script specified in <value>.

<var> = call <class:method:param>

Call an external java class. (see also chapter ‘customer exits’).

<var> = random <maximum> Compute a random number within 0 and <maximum>.

<var> = getSessionId Get the session id of the execution unit. Empty if not attached

to a session.

<var> = makeLink <command> Construct a HTML link (‘anchor’).

<var> = getTimeMs Get number of milliseconds since 1.1.1970.

<var> = getDate <dateformat> <timeformat> <language> <country>

 SPECTO manuals SPECTO script

SPECTO - 115 - NLS

 Get a formatted date time. <dateformat> and <timeformat>
are of ‘none’, ‘short’, ‘medium’, ‘long’ and ‘full’; <language>
and <country> are according the ISO formats.

 Example: GetDate “short” “none” “en” “us”

set <parameter> <value> Set a property (see chapter ‘URL configuration’ for available

values)

<var> = get <parameter> Read a properties value.

properties List all properties (see also ‘Set’ command) and their current

values (for debugging purposes).

http <name> <value> Add an URL HTTP Request header

<var> = httpGet <field> Get the value of the HTTP response field <field> into variable

<variable>.

<var> = httpGetAll Get all HTTP response fields.

nextURL <chain> <URL> Override the next chain/URL to process. If <chain> is

below 0, the current chain is used.

notify <value1> <value2> <set> <timeout> <toolong> <content><custom> <waitloop>

 Create a notification event if <value1> is larger than
<value2>. If <set> is ‘true’ the notification is increased,
otherwise decreased.

notify_clear <noti.> <msg.> clears all notification stati. If ‘noti.’ is ‘true’ also active

notifications are deleted; if <msg.> is ‘true’ a release message
will be send.

<var> = len <string> Compute the length of <string>.

<var> = trim$ <string> remove leading and trailing blanks of <string>.

<var> = mid$ <string> <from> <to>
 Compute a substring of <string> starting at position <from>

and ending before position <to>. The index values are zero
based.

 Example: mid$ “ABCD” 1 3 will return ‘BC’.

<var> = left$ <string> <len> Compute the left part of <string>.
 Example: left$ “ABCD” 2 will return ‘AB’.

<var> = right$ <string> <len> Compute the right part of <string>.
 Example: right$ “ABCD” 1 will return ‘D’.

<var> = find$ <string> <string2> [<starting> [<ending>]]
 Find the position of <string2 in <string>; -1 if not found. This

function is case sensitive. The result is zero based and indicates

SPECTO script SPECTO manual

SPECTO - 116 - NLS

the position from the beginning of the string (not from the
<starting> position).

 Example: find$ “ABCD” “C“ will return 2.
 Example: find$ “ABCD” “c“ will return -1.
 Example: find$ “ABCD” “C“ 3 will return -1.

<var> = between$ <string> <string1> <string2> [<starting>]

 Extract the substring between <string1> and <string2> of
<string>. This function is case sensitive.
Example: between$ “ABCD” “B” “D” will return ‘C’.

<var> = replace$ <string> <string1> <string2> [<with> [<starting]]

Replace the substring between <string1> and <string2> of
<string> with <with> starting at position <starting>. This
function is case sensitive.
Example: replace$ “ABCD” “B” “D” “xxx” will return

‘ABxxxD’.

<var> = replaceI$ <string> <with> <starting> [<ending>]

Replace the substring between position <starting> and position
<ending> of <string> with <with>.
Example: replaceI$ “ABCD” 1 3 “xxx” will return ‘AxxxD’.

<var> = replaceTag$ <string> <tag> <with> [<starting> <ending>]

Replace all occurrences of <tag> in <string> with <with>.
Example: replaceT$ “ABCB” “B” “xx” will return ‘AxxCxx’.

<var> = Field <array> <index> Extract the <index> element of an array <array> of

elements. The separator of the elements is the first character in
<array>. The index is zero based.

Delay <milliseconds> Wait (at least) for the specified number of milliseconds.

Exit Terminate script. (Scripts automatically terminate at the end of

the script).

Quit Terminate script. (see also command ‘Exit’).

Return { <par> } Terminate script and return the concatenated list of parameters.
 The return value of a PBU script is used as a command instead

of the URL defined in this page.
 Example : ‘return ‘quit’;’ would stop the chain processing.

Script objects

Script supports various objects. Their members are accessed using standard ‘dot’
convention.

 SPECTO manuals SPECTO script

SPECTO - 117 - NLS

Members of object ‘specto.client [<member>]’ :
name
id
username
password
numchains

Members of object ‘specto.chain <chain> [<member>]’ :
name
id
type
sequence
flags
period
numurls
definednotifications
activenotifications

Members of object ‘specto.chain.url <chain> <url> [<member>]’ :
url
symbolicName
id
type
sequence
flags
waitBetweenUrls
sessionId
tooLong
timeOut
numPars
numContents

Members of object ‘specto.chain.notification <chain> <notification> [<member>]’ :
address
type
message
source
deltaMinutes

Members of object ‘specto.thread <thread> [<member>]’ :
name
type
chain
position
status

Members of object ‘specto.notification [<member>] :
address
type
status (0=first, 1=reminder, 2=release)
subject

SPECTO script SPECTO manual

SPECTO - 118 - NLS

source
typeError
message
deltaMinutes
level

notes:

Setting ‘type’ to “” disables execution of the notification.

Members of object ‘document’ :
get <document> read document content
add <document> <value> store <value> into document <document>.

Members of object ‘file’ :
append <filename> <value> append <value> to file <filename>.
read <filename> return content of file <filename>.
remove <filename> remove file <filename>.
list <mask> return a list of files matching <mask>.

Members of object ‘mail’ :
send <to> <subject> <message> [<attachment>]

send an email message.

Members of object ‘’response’ :
resultContentCheck get/set ‘content check’ value (from measurement).
resultContentCheckBad get/set ‘content check bad’ value (from measurement).
timePassed get/set time passed value (from measurement).
responseCode get/set ‘response code’ value (from measurement).
URLCheck get/set ‘URLCheck’ value (from content check).

Members of object ‘results’ :
toFile <chain> <daysBack> [<beginhour> [<endhour>]]

Generate a result file. Returns the filename.
toGraphic <chain> <daysBack> [[[<beginhour> [<endhour> [<limit>]]]

Generate a graphical result file. Returns the filename.
toOverview <type> <chain> <daysBack> [<limit>]

Generate a graphical overview file. Returns the filename.
Type : 0=monthly, 1=weekly, 2=daily.

toHTML <chain> <daysBack> [<beginhour> [<endhour>]
Generate a result in HTML format.

toPDF <type> <subType> <chain> <elements_back> [<limit>]
Generate a result in PDF format. Returns the filename.

Members of object ‘cookie’ :
get <name> <path> The cookie’s value.
getPath <name> <path> The cookie’s path.
getDomain <name> <path> The cookie’s domain.
getExpires <name> <path> The cookie’s expiration date/time.
getAll <name> <path> The cookie’s combined information.

 SPECTO manuals SPECTO script

SPECTO - 119 - NLS

Members of object ‘xml’ :
Attribute.get <text> <taglist> Get an XML attribute.
Attribute.set <text> <taglist> <value> Set an XML attribute.
Attribute.add <text> <taglist> <value> Add an XML attribute.
Attribute.remove <text> <taglist> <value> Remove an XML attribute.
Element.get <text> <taglist> Get an XML element.
Element.set <text> <taglist> <value> Set an XML element.
Element.remove <text> <taglist> <value> Remove an XML element.

Special commands :

R3 ‘spec’ ‘input_parameters’ ‘output_parameters’ with <spec> of the form :

‘hostname:system:userid:password:client:language’

SPECTO script SPECTO manual

SPECTO - 120 - NLS

Example 1 (overview)

Reading attribute ‘_order’ :

order = attribute "order";

Setting a HTTP header during an ‘PBU’ event :

http "Accept-Language" "en" ;

The same using a global variable :

_language = "en";
http “Accept-Language” _language;

Initializing global numerical variable ‘_bcount’ to 1 when a chain is started for the first
time:

if _firstRun eq "";
 _firstRun = "no";
 _bcount = 1;
endif;

Extract the first half of a string :

text = "abcdefgh";
lll = len text;
lll = lll / 2;
htext = mid$ text 0 lll;
log lll " - " htext;

Indirection (a kind of pointer mechanism), variant 1 :

pv1 = "_firstRun";
log &pv1;

Indirection (a kind of pointer mechanism), variant 2 :

pv2 = var "_first" "Run" "4";
log pv2;

loop over an array content :

index = 0;
loop;
 el = field ";first;second;last", index;
 ll = len el;
 if len eq 0; break; endif;
 index = index + 1;
endloop;

 SPECTO manuals SPECTO script

SPECTO - 121 - NLS

Example 2 (language features)

/*
 demonstration of SPECTO scripting capabilities
 rel. 1.0
*/

// output
debug "Output to debugging screen";
log "Output to console and into Log table";

// variables and assignments
varInt = -1204;
varString1 = "Test";
varString2 = "Test\u0022Test";
debug varInt varString1 varString2;

// arithmetic operations
sum = 3 + 4 * 5;
debug "sum 1 : " sum;
sum = 1 + sum / 2;
debug "sum 2 : " sum;

// String operations
xxx = " to ";
xxxt1 = trim$ xxx;
xxxt2 = trim$ " to ";
debug "*" xxx "*" xxxt1 "*" xxxt2 "*";
s = "from the begin" & xxx & "the end";
sl = left$ s 2;
sm = mid$ s 6 1;
sr = right$ s 1;
sall = sl & sm & sr;
debug "PartStrings: " sl "," sm "," sr;
debug "Together : " sall;
found1 = find$ s " to ";
found2 = find$ s "notthere";
debug "Founds at " found1 " and " found2;

// file operations
filename = "test.txt";
debug filename;
file.remove filename;
file.append "test.txt" "XXX";
r = file.append "test.txt" "XXX";
debug r;
file.append filename "XXX" vvv;
r = file.append filename "XXX" vvv;
debug r;
file.append filename "Robert" "Krämer" "\r\n";
r = file.append filename "line 2" "\r\n";
debug r;
file.append filename "last line" "\r\n";
ff = file.list ".";
debug ff;
ft = file.trew;
fi = file.read filename;
debug fi;

// control structures - conditional execution
if sum eq 18;
debug "sum is okay";
else;
debug "sum is not okay: " sum;
endif;

SPECTO script SPECTO manual

SPECTO - 122 - NLS

// control structures - loops
i = 1;
loop;
 i = i + 1;
 if i gt 3;
 break;
 endif;
 debug "loop: " i;
endloop;

z1 = specto.chain currChain "name";
z2 = specto.url currChain currURL "symbolicName";

set notificationEnable true;
strInline = "set notificationEnable false;";
debug strInline;
x = inline strInline;
debug x;
strSet = Get "notificationEnable";
debug strSet;

x = inline "set notificationEnable false;";
debug x
strSet = Get "notificationEnable";
debug strSet;

Example 3 (XML)

SPECTO Script has a XML library, allowing to access and modify attributes and content of
selected elements of a XML document.

// an example of XML processing caps.
//

// get from a persistent document
nXML = "\lxmldemo\l";

// read/write attribute
a1 = xml.attribute.get nXML "id";
xml.attribute.set nXML "id" "2";

// read/write tag
t1 = xml.element.add nXML "value" "124";

Example 4 (notification)

// script=ss
// reading and modifying the current notification
// used in a PBN script

// read an attribute of this notification
a = specto.notification "address";
log "address is : " m;

// set an attribute of this notification
specto.notification "message" "modified";

 SPECTO manuals JavaScript

SPECTO - 123 - NLS

JavaScript

Overview

As an alternative to SPECTO Script JavaScript (ECMA script) can be used wherever
SPECTO script is possible.

Features are :

 Compliant to JavaScript 1.5
 Usable wherever SPECTO script may be used
 Full access to SPECTO object-hierarchy

Selection of scripting engine

By default SPECTO uses SPECTO script.
This default may be changed by setting the (client dependent) attribute
‘DefaultScriptEngine’ to ‘js’ for JavaScript or ‘ss’ for SPECTOScript.

Using the ‘es’ command to execute a script via command line or the batch processor, the
variants ‘esj’ or ‘ess’ start scripts as JavaScript or SPECTOScript respectively, overriding
the default or the setting of attribute ‘DefaultScriptEngine’.

In the first line of a script the tag ‘//script=js’ or ‘//script=ss’ may be used to define the
scripting engine for that script, overriding any other configuration.

Syntax of JavaScript

The SPECTO JavaScript implementation fully adheres to JavaScript 1.5. Therefore any
book about JavaScript can be used as a reference or tutorial.
Note that this is a ‘server side’ implementation of JavaScript; common objects of ‘client
side’ implementations in web browsers like ‘screen’, ‘window’ or ‘frame’ are not available
here.

Returning results

A JavaScript program may return results to the SPECTO engine by terminating with any
JavaScript expression. E.g. the script ‘4 + 5;’ returns ‘9’. If a JavaScript is executed direct
via the ‘es’ command, the result of the script is output to the screen; if a JavaScript is called
via another JavaScript, the result is stored in the result variable (if specified) of the calling
script.

Using the SPECTO object hierarchy

JavaScript SPECTO manual

SPECTO - 124 - NLS

A JavaScript program has access to selected internal objects and methods of the SPECTO
engine by several predefined objects in the JavaScript engine.

This SPECTO object hierarchy is the same hierarchy used for accessing SPECTO objects
via external JAVA applications. The complete reference to the object hierarchy is made
available as a JavaDoc file.
Also JavaScript’s reflection methods may be used to find out more about SPECTO objects
(see example 5).

Available SPECTO objects

A JavaScript program has access to the internals of the SPECTO engine by several
SPECTO objects.

‘specto’ predefined object; includes the chains and URLs hierarchy of

the current client (see example 1) and the execution engine.

‘script’ Predefine object; allows execution of other scripts.

All other objects described below are dynamically created and need not be defined in the
JavaScript program.

The methods and structures (=classes) of the SPECTO engine available for javascript
programs are available via the ‘api’ and ‘struct’ commands (menu: ‘development’).

The following list is only an excerpt of the available commands.

A list of methods is displayed by ‘api list’; any method is described by the ‘api
describe <method>’ command.

Example (command ‘api describe writeCluster’) :

Where appropriate, it is possible to navigate to the structure definition from a method’s
parameter list.

 SPECTO manuals JavaScript

SPECTO - 125 - NLS

List of Properties and Methods of object ‘specto’ :

Void message(text)

Output a message to the screen (if executed online) or to the log.

Void log(text)

Output a message to the log.

Void getSessionId()
Get the session id of the current selection (empty if no session connected to the
scripts execution unit (e.g. batch scripts or pb/pa scripts)).

Void makeLink(command)

Construct a HTML link (an anchor) to the specified SPECTO engine command. Gets
the session information from ‘getSessionId()’.

AttributesChain[] getChains()

Returns a collection of the chains in the current client. Any chain is represented as an
‘AttributesChain’ object.

Void setUpdate()

Mark the current client to be scheduled for update to the database. To be used after
changes have been made to the chain/URL object hierarchy.

String getAttribute(attribute_name)

Return the value of a SPECTO attribute. The attributes name is automatically prefixed
with an underscore (‘_’) to prevent (for security reasons) access to normal SPECTO
attributes.

Void setAttribute(attribute_name, attribute_value);

Set the value of a SPECTO attribute. The attributes name is automatically prefixed
with an underscore (‘_’) to distinguish it from the normal SPECTO attributes.

String getVariable(variable_name);

Return the value of a SPECTO local or global variable.

Void setVariable(variable_name, variable_value);

Set a SPECTO local or global variable.

String getProperty(property_name);

Get the property value of an executing URL. Only makes sense for ‘process...’ scripts.

Void setProperty(property_name, property_value);

Set the property value of an executing URL. Only makes sense for ‘process...’ scripts.

AddressEntry[] getNotifications(chain_id)

Return a collection of defined notifications of the specified chain.

NotificationEntry[] getActiveNotifications(chain_id)

Return a collection of currently active notifications of the specified chain.

JavaScript SPECTO manual

SPECTO - 126 - NLS

NotificationEntry getNotification()

Return the current notification. To be used inside a PBN script.
Setting ‘.typeNotification’ to “” disables execution of the notification.

Boolean startThread(chainId)

Start one instance of the specified chain.

Boolean stopThreads(chainId)

Stop all instances of the specified chain.

Boolean stopAllThreads()

Stop all chain-instances of this client.

ThreadEntry[] getThreads(chainId)

Get a collection of all chain-instances of the specified chain.

ThreadEntry[] getAllThreads()

Get a collection of all chain-instances of this client.

Boolean sendMail(address, title, message,[, attachment])

Send an email.

String html (format [, convert_flag])

Create an html format (see examples 6 and 7).
The following are valid tags for format : normal, bold, italic, bold-italic,blink, newline,
small, medium, large, space, tableon, tableoff, tron, troff, tdon, tdoff, gt, lt.

The optional convert_flag must be set to false if used for a console script (see example 7).

String reportPDF(type, subtype, chained, elementsBack, limit)
String reportPDF(type, subtype, chained, elementsBack)
 Generates a PDF formatted report. Returns the filename.

String readFile(file_name);

Get the content of a file on the local machine.
Returns null if an error occurred.

String writeFile(file_name, content);

Write a file on the local machine.
Returns null if the write was successful, an error description otherwise.

String deleteFile(file_name);

Delete a file on the local machine.
Returns null if the delete was successful, an error description otherwise.

String execCommand(command)

Execute a SPECTO command.

GregorianCalendar getGregorianCalendar()

 SPECTO manuals JavaScript

SPECTO - 127 - NLS

Return a new instance of a (Java) GregorianCalendar.

String getLatestError();

Returns a textual description of the latest error.

Properties and Methods of object ‘script’ :

String exec(script);

Execute a JavaScript document.

Properties and Methods of object ‘AttributesChain’ :

Id Id
sequence Sequence number within chain
type Type
name Name
flags Set of flags, coded as an integer
period period of execution (in seconds)
timeout ‘timeout‘ limit (in milliseconds)
toolong ‘too long’ limit (in milliseconds)
lastReportingUpdate Time of last entry into reporting

AttributesURL[] getURLs()

Returns a collection of URLs of this chain.

Properties and Methods of object ‘AttributesURL :

Id Id
sequence Sequence number within chain
waitBetweenURLs Time to wait before execution of next URL
type Type
symbolicName Symbolic name
sURL URL
sessionId Session Id
flags Set of flags, coded as an integer
timeout ‘timeout‘ limit (in milliseconds)
toolong ‘too long’ limit (in milliseconds)

Properties and Methods of object ‘AddressEntry’ :

typeNotification type of notification
address Address
message Message to be included
flags Set of flags, coded as an integer
source the initiating client/chain
deltaMinutes time between executions

JavaScript SPECTO manual

SPECTO - 128 - NLS

level level of invocation

Properties and Methods of object ‘NotificationEntry’ :

typeNotification type of notification
chainId id of the associated chain
URLId id of the URL triggering the notification
status (0 = first, 1 = reminder, 2 = release)
adress Address
subject subject (e.g. of email)
message Message to be included
flags Set of flags, coded as an integer
source the initiating client/chain
deltaMinutes time between executions
level level of invocation
startTimestamp Time of first execution of this notification
nextNotification Time of next execution of this notification

Properties and Methods of object ‘ThreadEntry’ :

clientId Id
chainId Sequence number within chain
name Name

Integer getLastResult()

Returns the latest result code.

String getLastResponse()

Returns the Timestamp of the last execution.

 SPECTO manuals JavaScript

SPECTO - 129 - NLS

The SPECTO JavaScript XML object :

SPECTO provides several ways to work with XML formatted objects:

 The SAX Parser
 The SPECTO XML library

The SPECTO XML library

The SPECTO XML library is available for scripts written in JavaScript and for exit
implementations written in Java.

xml getXMLObject (String_source);

The provided xml-formatted text (‘source’) is stored within a new created xml object.
No validation is performed on ‘source’.

JavaScript SPECTO manual

SPECTO - 130 - NLS

SPECTO engine objects

The complete SPECTO engine modules are also available via the SPECTO java script
implementation. Usage of this APIs requires specific knowledge of the internal structure of
SPECTO and is not recommended without assistance by NLS.

Class of returned instance method description
SpectoBackGround[] getBkgEntries ()
SpectoBatch getBatchInstance ()
SpectoDelayedWrite getDelayedWriteInstance ()
SpectoHTTPServer getHTTPServerInstance ()
SpectoLocal getLocalInstance ()
SpectoLogging getLoggingInstance ()
SpectoMail getMailInstance ()
SpectoMaster getMasterInstance ()
SpectoMonitor getMonitorInstance ()
SpectoNameService getNameServiceInstance ()
SpectoNet getNetInstance ()
SpectoNotification getNotificationInstance ()
SpectoPersistence getPersistenceInstance ()
SpectoReporting getReportingInstance ()
SpectoServices getServicesInstance ()
SpectoUsers getUsersInstance ()

Example

The following example lists some details of the currently active monitors (information
similar to the command ‘mo l’) :

// script=js

// list active monitor entries

var monitor = specto.getMonitorInstance();
var entries = monitor.getMonitorEntries();

 for(i=0; i<entries.length; i++) {
 var entry = entries[i];

 if (entry)
 specto.message("Pos " + i + ": thread=" +
 entry.clientId + "/" + entry.chainId + " : " + entry.status);
 }

 SPECTO manuals JavaScript

SPECTO - 131 - NLS

Example 1 (accessing SPECTO objects: chain/url hierarchy)

The following example outputs some information about the chains and their URLs of the
current client to the screen. Also it increases the value of the ‘tooLong’ parameter of every
url by one and saves enables the changes to be saved back to the database.

//script=js
//example for access of SPECTO objects

specto.log("JavaScript Demo: js1");
specto.message("\n\nThe chains in this client (\"" +
 specto.getClientName() + "\") :");
var chains = specto.getChains();
for (i in chains) {
 specto.message("[" +
 chains[i].Id + "] " +
 chains[i].name + " (" +
 chains[i].numURLs + " URLs)");
 var urls = chains[i].getURLs();
 for(u in urls) {
 specto.message("- " +
 ((urls[u].symbolicName == "")
 ? urls[u].sURL : "[" + urls[u].symbolicName + "]"));
 urls[u].toolong += 1;
 }
}
specto.setUpdate();

Example 2 (accessing SPECTO objects: execution)

The following example shows access to the execution methods of the ‘specto’ object.

//script=js
//example of chain execution
var thisChain = 10;

function listThreads(chain) {
var threads = specto.getThreads(chain);
 specto.message("\nActive threads:");
 for(it in threads)
 specto.message(threads[it].name +
 " [" + threads[it].clientId + "]");
}

// main
listThreads(thisChain);
specto.startThread(thisChain);
listThreads(thisChain);

Example 3 (accessing SPECTO objects: others)

The following example shows access to several other parts of the ‘specto’ object.

//script=js
//example for access to SPECTO objects
var thisChain = 10;

JavaScript SPECTO manual

SPECTO - 132 - NLS

specto.message("\nDefined notifications:");
var adrs = specto.getNotifications(thisChain);
for(iadrs in adrs)
 specto.message(adrs[iadrs].adress +
 " / " + adrs[iadrs].deltaMinutes);

specto.message("\nActive notifications:");
var notifs = specto.getActiveNotifications(thisChain);
if (notifs.length <= 0)
 specto.message("no active notifications " +
 "for chain " + thisChain);
else
 for(inotifs in notifs)
 specto.message(adrs[iadrs].adress +
 " / " + adrs[iadrs].message);

specto.message("Calling javascript \"js1\" :");
specto.message(script.exec("js1"));

//returning a message
"Script \"js2\" terminated successfully";

Example 4 (documents)

The following example shows how to access (read & store) SPECTO documents (use
SPECTO command ‘tal’ to get an overview on available documents.

//script=js
//example for reading/storing of documents
var doc = "testdoc1";
var itext = "doc to save";

specto.message("Saving document : " + doc);
var lId = specto.storeDoc(doc, itext);
specto.message("used/generated link Id : " + lId);

specto.message("\nReading document: " + doc);
var text = specto.readDoc(doc);
 specto.message(((text == null)
 ? "document " + doc + " not found"
 : "content of " + doc + " :\n" + text)
 + "\n");

Example 5 (reflection of SPECTO objects)

The following example shows how to use JavaScript reflection to get information about
SPECTO objects.

//script=js
//example of inspection of SPECTO objects
function members (obj) {
 for (m in obj) {
 var t = typeof obj[m];

 specto.message(t + " : " + m);
 }
}

 SPECTO manuals

SPECTO - 133 - NLS

specto.message("\nThe members in \"specto\" :");
members(specto);

specto.message("\nThe members in \"AttributesChain\" :");
members((specto.getChains())[0]);

specto.message("\nThe members in \"AttributesURL\" :");
members((((specto.getChains())[0]).getURLs())[0]);

Example 6 (formatting output)

The following example shows how to format output for programs intended to be run in
the foreground using the ‘es’ command :

// script = js

var chain = 1;

specto.message(
 specto.html("italic") +
 "There are currently " +
 specto.html("bold-italic") +
 specto.getActiveNotifications(chain).length +
 specto.html("normal") +
 " notifications for chain " +
 chain + ".");

Example 7 (console plug-in)

The following example shows a plug-in for the master or client console. It has to be saved
as ‘console_1’, ‘console_2’ or ‘console_3’. For this demo to work, the console has to be
configured (‘mcc’ or ‘cvc’) to display the script in one frame and variable ‘_console1’ in
another frame :

// script = js

// a demonstration for a console plug in

// setting one of the three console variables
var c1;
 if ((c1=specto.getVariable("_console1")) == "")
 c1 = 0;
 c1 = parseInt(c1);
 c1 += 1;
 specto.setVariable("_console1", c1);

// setting a HTML formatted result text
 specto.html("newline", false) +
 "current client is " +
 specto.html("bold-italic", false) +
 "\"" + specto.getClientName() + "\"" +
 specto.html("newline", false);

 SPECTO manual

SPECTO - 134 - NLS

Example 8 (Low level system access)

Accessing the runtime environment of the SPECTO engine:.
These are potentially very dangerous functions.

// System properties
var pr = "user.country";
 specto.setSystemProperty(pr, "DE");
var pv = specto.getSystemProperty(pr);
 specto.message("Property " + pr + " : '" + pv + "'");

// System environment
var en = "PATH";
var ev = specto.getSystemEnvironment(en);
 specto.message("Environment " + en + " : '" + ev + "'")

// System runtime
var rt = specto.getRuntime();
var prog = "notepad.exe";
 //rt.exec(prog);

Example 9 (Session persistence)

There are two separate scripts who exchange data via the ‘session persistence’ object::

//
// Demo for session based persistence, part I
// Name : persist_1
//
var per = specto.getSessionPersistence();
var key = "abcde";

 if (per != null) {
 per.put(key, "xxx");
 specto.execScript("persist_2");
 }

//
// Demo for session based persistence, part II
// Name : persist_2
//
var per = specto.getSessionPersistence();
var key = "abcde";
var val;

 if (per != null) {
 val = per.get(key);
 specto.message(val);
 }

 SPECTO manuals

SPECTO - 135 - NLS

Example 10 (class/instance references)

Working with SPECTO JAVA classes and instances of JAVA classes: :

var clna = "java.util.GregorianCalendar";
var cl = specto.classForName(clna);
 specto.message("Class ref '" + clna + "' : " + cl);
var clin = specto.newInstance(cl);
 specto.message("Class ins '" + clin);

var greg = specto.getGregorianCalendar();
 specto.message("Greg.Cal.Inst. : " + greg);
var gregCl = specto.getClass(greg)
 specto.message("Greg.Cal.Class : " + gregCl);

 clna = "kernel.ExtendedCalendar";
var cl = specto.classForName(clna);
 specto.message("Class ref '" + clna + "' : " + cl + "'");
 specto.message("Class val '" + cl.getName() + "'");
 clin = specto.newInstance(cl);
 specto.message("Class val '" + clin.APRIL + "'");
 specto.message("Class val '" + clin.getWeekYear() + "'");

Example 11 (Working with JSON formatted data: Parser)

Parsing JSON formatted data into JavaScript objects:

// A function to parse JSON into a JS object using
// the SPECTO JSON preprocessor
function parseJSON (json) {
var jsonPrepped = specto.prepJSON(json);
 specto.message(jsonPrepped.length());
// Parse based on (clean ?) 'Function' approach
var obj = Function('return (' + jsonPrepped + ')')();
// Alternate (dirtier, 'eval()' based) version of parse
 //obj = eval("(" + jsonPrepped + ")");
 return obj;
} // parseJSON()

// Example run
// specto.message("Source: " + jsonfile);
var obj = parseJSON(jsonfile);
 specto.message("Obj : " + obj + " / " + obj.name + " / " +
 obj.periodDuration + " / " + obj.order);

for (var prop in obj) {
 specto.message(prop);
}

 SPECTO manual

SPECTO - 136 - NLS

Example 12 (Codings: BASE64, Deflate, Zip)

Decoding and encoding data using BASE64, Decode/Encode and ZIP.
Also shows determining and changing the character set:

var from = "aA./bb";

// Used character set
 specto.message("Charset : " + specto.charsetS);
 //specto.charsetS = "ISO-8859-1";
 specto.message("Charset : " + specto.charsetS);
 specto.message(" ");

// Base 64
var b64 = specto.btoa(from);
 specto.message("to B64 : " + b64);
 specto.message("from B64 : " + specto.atob(b64));
 specto.message("EQ : " +
 ""+specto.atob(specto.btoa(from)) == from);
 specto.message("TO : " +
 typeof (""+specto.atob(specto.btoa(from))) + typeof from);
 specto.message(" ");

// URL Encode/Decode
var enc = specto.encodeURL(from);
 specto.message("to encoded : " + enc);
 specto.message("from encoded : " + specto.decodeURL(enc));
 specto.message(" ");

// Deflate/ZIP
var deflated =
 "nZNNb9swDIb/iqC7vxO0EOIUaYJiAbrNS9wddpNluhVgSZ4op92/n+w4aQ5L" +
 "DrsYAvny6yG9ePhQLTmARWl0TpMwpgS0MLXUrzl9KZ+Ce/qwXCBXbdqxVe/e" +
 "9A5+94CO+ECN7OjJaW81MxwlMs0VIHOC7Vdfn1kaxqyzxhlhWkpWiGCdL7U2" +
 "GnsFdg/2IAW87J5z+uZchyyKKo5N6OWtrCz3DxVRsvEVpeZu7PIkbKAGO9rC" +
 "KUZFWtZdNDYVIRpKnowVMPad04a3CJRsNzkVTZUk84oHVVaJYDbzn/tZDUE1" +
 "v6vidF7PeMW9EguOKA/wGYvYw1aj49rlNI3TJEjiILkrk4xlKUvjMEuyX5QU" +
 "08iPUh9R3uJTHUXIvpRlERTf9yUlP08r8QI6LYCN1e0l+duJ+Qk3XV6Hu4gu" +
 "k593/c1n224K00rxh6za1ryvLXDnUTjbwwhWcXe9fhImo0XWQTNKWa+xAyEb" +
 "CTUl+2Io8KPn7WCwN7cfnZuabg/qcaP+iBx8OLI2quNW4oBLSS1Vr87ILoXr" +
 "1gPZQfNfAG/KBBNDbm8eDubd2Ho4ABC+09JyP7ex7sT5Xx0tJ+eVCT/dl3/g8i8=";

// deflated = "S3TU009KAgA="; // = deflated(from)
 deflated = specto.deflate(from);
 deflated += ""; // Convert from Object to String
 specto.message("deflated : " + deflated);
 specto.message("deflated type : " + typeof deflated);
 specto.message("deflated len : " + deflated.length);
 specto.message("from deflated : " + specto.inflate(deflated));
 specto.message(" ");

 SPECTO manuals

SPECTO - 137 - NLS

Example 13 (Working with OS files)

Finding and deleting files:

// retrieve a list of files from the
// engine or the web directory
// the pattern must be at the beginning of the filename
// or within the filename if '* is the first character
// true/false indicates whether engine or web directory

var files = specto.getFileNames("del", true);

 if (files) {
 specto.message("number found: " + files.length);
 for(var iF=0; iF<files.length; iF++) {
 var filename = files[iF];
 specto.message(filename);
 // optionally delete the file (only in engine dir)
 if (true) {
 var result = specto.deleteFile(filename);
 if (result)
 specto.message("Failed:" + result);
 else
 specto.message("Deletion of " + filename + " okay");
 }
 }
 }
 else
 specto.message("No matching files found");

Example 14 (Sending emails)

Sending an email to one or more recipients and optional attachments (file):

specto.sendMail("specto@mathesis.de",
 "Title", "Body Line1\nLine2");

specto.sendMail("specto@mathesis.de",
 "Title", "Body Line1\nLine2", "report.pdf");

specto.sendMails(["specto@mathesis.de", "specto@nls.de"],
 "Title", "Body Line1\nLine2", “report.pdf”);

 SPECTO manual

SPECTO - 138 - NLS

Example 15 (Creation and Distribution of reports with attached PDF)

// generate a day-based summary report with a PDF attachment
// and email it to a list of recipients
//
// demo script - MATHESIS (c) 2003/11/02
//
// this script is intended to be started by the batch processor

// init
var report = specto.getReportingInstance();
var adrs = new Array(
 "xxx@customer.de", "yyy@customer.de",
 "admin.specto@mathesis.de"
);
var i;
var st = " style='font-size:10pt; font-family:Tahoma'";
var tt = "<table border=1>";
var ttc = "</table>";
var tr = "<tr>";
var trc = "</tr>";
var td = "<td" + st + ">";
var tdc = "</td>";
var th = "<th align='left'" + st + ">";
var thc = "</th>";
var nl = "
";
var now = specto.getGregorianCalendar();
var text =
 "<div" + st + ">" + nl +
 "<u>SPECTO Tagesbericht f?r " +
 specto.formatDate(now, "de", true, true) + "</u>" + nl + nl;
var status;

// within the current client, loop over the running chains
var threads = specto.getAllThreads();
 text += "Laufende Monitore:" + nl + nl;
 text += tt + tr + th + "Prozess" + thc + th + "Letzter Lauf" + thc +
trc;
 for (i=0; i<threads.length; i++) {
 var thread = threads[i].iThread;

 text += tr + td + thread.ac.name + " [" + thread.Name + "]" +
 tdc + td + specto.formatDate(thread.getLastResponse(),

"de", true, true) + tdc + trc;
 }
 text += ttc;

// check open notifications
var notifs = specto.getActiveNotifications(-1);

 text += nl + nl + "";
 if (notifs.length == 0) {
 text += (status="Keine aktuellen St?rungen") + "" + nl;
 }
 else {
 text += (status="Aktuelle St?rungen") + " :" + nl + nl;
 text += tt + tr + th + "Prozess" + thc +
 th + "Stoerungsbeschreibung" + thc + th + "Nachricht" + thc +
 th + "seit" + thc + trc;

 SPECTO manuals

SPECTO - 139 - NLS

 for (i=0; i<notifs.length; i++) {
 var notif = notifs[i];
 text += tr + td + specto.getChains()[notif.chainId].name + tdc +
 td + notif.descriptionOfError + tdc +
 td + notif.message + tdc +
 td + specto.formatDate(notif.startTimestamp,
 "de", true, true) + tdc + trc;
 }
 text += ttc;
 }

// check recent notifications
var rnotifs = specto.getReportedNotifications(-1, 1);

 text += nl + nl + "";
 if (rnotifs.length == 0) {
 text += "Keine St?rungen am Vortag" + "" + nl;
 }
 else {
 text += "St?rungen am Vortag" + " :" + nl + nl;
 text += tt + tr +
 th + "Zeitpunkt" + thc + th +"Prozess" + thc +
 th + "Status" + thc + th + "Adressat" + thc + trc;
 for (i=rnotifs.length; i>0;) {
 var rnotif = rnotifs[--i];
 text += tr + td + rnotif.timest.substring(11, 19) + tdc +
 td + specto.getChains()[rnotif.chainId].name + tdc +
 td + rnotif.status + tdc +
 td + rnotif.text + tdc + trc;
 }
 text += ttc;
 }

// additional remarks
 text += nl + nl +
 "<i>In Anlage eine graphische Darstellung des Verlaufs des " +
 "vergangenen Tags (PDF Format)</i>" + nl;

var mys = specto.getNetInstance();
 text += nl + "<hr><i>Erzeugt durch SPECTO Instanz : </i>" +
 mys.thisNetwork + "." + mys.thisNode + "." +
 specto.getClientName() + nl + nl;

//
// PDF generation
//
var filePDF = "attn2.pdf";
 now.add(now.DAY_OF_MONTH, -1);
var today = specto.formatDate(now, "de", true, false);
var limit = 5;
var leftM = 36;

// additional footer (not the pdf page footer!)
function footer () {
 specto.writeAtPos(
 "Die Graphiken sind i.W. auf " + limit + " Sekunden skaliert. " +
 "Balken am oberen Bildrand kennzeichnen Bereiche mit Fehlern.",
 0, leftM, 70, 0);

 SPECTO manual

SPECTO - 140 - NLS

 specto.writeAtPos("created by SPECTO", 0, 580, 70, 90);
}

// definition of automatic header and footer
var pe = specto.getPageEvent("image50.0;50.0;:logoCustomer.gif",
 "process monitoring", "customer.de");
 specto.setPageEvent(pe);

// open PDF stream
 specto.outputPDFFile(filePDF);
 specto.outputMode(false, false, true);

// title
 specto.format("size 12");
 specto.writeAtPos("Tagesverlauf customer.de' am " + today,
 0, leftM, 720, 0);
 specto.format("medium");

// loop thru the running threads
var currX = leftM, currY = 570;
 for (i=0; i<threads.length; i++) {
 var thread = threads[i].iThread;
 if (!thread.ac) continue;
 var chainId = thread.ac.sequence;
 var climit = limit;
 if ((chainId == 5) || (chainId == 12))
 climit = 2 * limit;
 specto.message(i + " : " + thread.Name + " : " + thread.ac.name);
// prepare graphic description block
 gra = specto.getReportConfigEntry();
 gra.clientId = specto.clientId;
 gra.chainId = chainId;
 gra.daysBack = 1;
 gra.sizeX = 395;
 gra.sizeXLegend = 100;
 gra.sizeY = 200;
 gra.yMax = limit + " Sekunden";
 gra.colorBkGnd = 0x7f7f7f;
 gra.colorBkGndLegend = 0xff0000;
 gra.colorLines = new Array(0x3f3f3f, 0);
 gra.arrowSize = 2;
 gra.markerRadius = 1;
 gra.chartBorder = 20;
 gra.chartBorderL = 25;
 gra.fontName = "tahoma";
 gra.fontSize = 9;
 gra.fontStyle = 1;
 gra.footer = thread.ac.name;
 // set position and scale of next graphic
 specto.reportGraPos(currX, currY, 2, 60, 60);
 // generate the graphic
 specto.reportGra(-1, 0, limit*1000, 0, 24, new Array(gra), false);
 specto.writeAtPos("Prozess '" + thread.ac.name + "' [" + chainId +
 "/" + thread.Name + "]", 0, currX, currY-10, 0);

 // list of recent notifications of this chain
 rnotifs = specto.getReportedNotifications(chainId, 1);
 if (rnotifs.length <= 0)
 specto.writeAtPos("Keine St?rungsmeldungen",

 SPECTO manuals

SPECTO - 141 - NLS

 0, currX, currY-20, 0);
 else {
 var cno = 2;
 specto.format("size 8");
 for (var ino=rnotifs.length; ino>0;) {
 var rnotif = rnotifs[--ino];
 var text = rnotif.type + " Fehler seit " +
 rnotif.timest.substring(11, 19) + " : " +
 rnotif.status + ", " + rnotif.text;
 if (text.length > 70)
 text = text.substring(0, 70);
 specto.writeAtPos(text, 0, currX, currY-(cno*10), 0);
 if (cno++ > 5) break;
 }
 specto.format("medium");
 }

 // go to next column, row, page
 if ((currX+=280) > 400) {
 currX = leftM;
 if ((currY-=200) < 100) {
 currY = 570;
 footer();
 specto.writePageBreak();
 specto.writeAtPos("Fortsetzung des " + today, 0,

leftM, 720, 0);
 }
 }
 }
 footer();
 specto.outputMode(false, false, false);

// send the email with attached PDF
 if (true)
 specto.writeFile("c:\\t.html", text);
 else
 specto.sendMails(adrs, "SPECTO Status: " + status, text,

filePDF);

// Return the generated text

text;

Business-to-business (‘b2b’) SPECTO manual

SPECTO - 142 - NLS

Business-to-business (‘b2b’)

Overview

In addition to the common human-to-machine communication made possible by a browser
displaying HTML formatted documents, the internet is also used for machine-to-machine
communication exchanging business documents (mostly) formatted in an XML syntax.
This process is normally fully automated.

Typical for the exchanged documents is that they are :

• Represented using UNICODE characters,
• formatted in extensible markup language (‘XML’),
• structured according to an document type definition (‘DTD’) or a schema.
• include at least a sequence number and an transaction code

The transfer of B2B documents may happen using :

• HTTP (‘www’) protocol
• SMTP (‘email’) protocol

Above functionality is implemented in SPECTO.

Certain organizations and companies are working on standardization of structured
document types for b2b exchange.
They are among others :

• Electronic business XML initiative (‘ebXML’) by UN/EDIFACT
• Common XML business library (‘xCBL’) by Commerce One Inc.
• ECo framework by Commerce.net

SPECTO will support above recommendations/implementations when they become
significant.

Usage

SPECTO handles B2B requests like URLs. Instead of the URL a pair of address and DTD
has to be applied, separated by a ‘;’ character. For HTTP transport the address is an URL,
for SMTP transport the address is an email address. The DTD may be specified by its
name or id.

The creation and analysis of XML formatted documents is assisted by separate documents
formally describing structure and possible content of the business documents. Those
formal specifications are maintained using spcification languages like

• DTD (‘document type definition’)
• XML schema
• Proprietary specifications (Microsoft ‘XDR’, commerce one ‘SOX’, etc.)

 SPECTO manuals Business-to-business (‘b2b’)

SPECTO - 143 - NLS

Up to release 1.2 SPECTO’s XML processing was based on specifying DTDs which then
were transformed to XML formatted business documents at runtime using variable defined
in the SPECTO URL specification. It was planned to replace/enhance the DTD
mechanism by XML schema (which is generally considered to be the successor to DTD).

Since then our view towards using XML business documents has changed, in fact has been
made a lot of easier, by not using the specification level any more but relying on
parameterized XML skeletons of existing business documents which are value substituted
at run time.
The advantages are :

• Allows easy usage of recorded or vendor supplied business documents samples
• Fits into SPECTO’s existing parameter/variables/content-checking model
• No problems with inconsistent / non-existing schema definitions (…)
• Much easier to use

Therefore SPECTO does not support handling of schemas any more but will be supplied
with a set of XML business samples of leading e-commerce players (Ariba’s ‘cXML’,
Commerce one’s ’xCBL, UN/CEFACT ‘ebXML’, the BME’s ‘BMEcat’).

In a future release Specto will be able to automatically import documents from an XML
repository and will allow version and delta checking of schema files to detect changes
which may have consequences on the skeleton business documents being used.

The mechanisms described here are also used for data formatting of SOAP messages.
There the resulting XML document is the included into an (also XML) SOAP frame.

The b2b document templates available in SPECTO are separated into the groups :

• Transfers for documents used for specification of the transport of douments,
SOAP is the most common example.

• Frameworks describing mechanisms to construct business documents.
• Functions business documents already specified for concrete business scenarios
• Verticals predefined documents for very specific applications.

Details

Transport: SOAP

SOAP does not specify any business content but the transport mechanism and therefore is
usually used together with a b2b framework or function.
SOAP always formats the business content in XML (they have their own schemes and
namespaces). Transport may be via HTTP and SMTP. SOAP is basically a RPC (‚remote
procedure call’) mechanism used to call application functions in remote systems and return
their results. Therefore SOAP provides XML frames for requests, messages and responses.

SPECTO supports SOAP via predefined frames (‚query’, ‚answer’, ‚message’ and ‚fault’)
which may be parameterized in the usual way, and some predefined variables (‚SOAP-
action’, ‚SOAP-encoding’, ‚SOAP-namespace’, ...).

Business-to-business (‘b2b’) SPECTO manual

SPECTO - 144 - NLS

In the response the new http status 500 is made available in variable ‚SOAP-response-
http500’, then the SOAP XML frame is stripped, and the result of the remote function call
handled over to the SPECTO ‚content check’.

Example:

Note : The %%xxx%% denotes the access to the variable xxx. For details see chapter
‚Working with text’ (page 45).

All SOAP frames have symbolic names starting with ‘SOAP’; they can be listed using the
command ‘tal SOAP’ :

 SPECTO manuals Business-to-business (‘b2b’)

SPECTO - 145 - NLS

Function: xCBL

XCBL is Commerce one’s ‘common business library’ :

Example of a parametrized business document :

The following SPECTO business document skeleton (in xCBL format) :

…
<orderheader>
 <poissuedate>%%idate%%</poissuedate>
 <requesteddeliverydate>%%ddate%%</requesteddeliverydate>
</orderheader>
<listoforderdetail>
 <orderdetail>
 %%Onicount:0:2%%
 <baseitemdetail>
 <lineitemnum>%%icount%%</lineitemcount>
 <supplierpartnum>%%partnum:icount%%</supplierpartnum>
 <qunatity>%%quantity:icount%%</quantity>
 <notes>/l124+icount/l</notes>
 </baseitemdetail>
 %%ENDON%%
 </orderdetail>
</listoforderdetail>
<ordersummary
</ordersummary>
…

will at runtime be transformed using this parameters :
idate = 2001-01-01
ddate = 2001-01-15
partnum = ;4711;1204;9999;
quantity = ;2;4;11;
textarea 8 = ‘handle with care’
textarea 124 = ‘’
textarea 125 = ‘ship sea packed’
textarea 126 = ‘print “/l8/l” on package’

to the following final document :

<orderheader>
 <poissuedate2001-01-01</poissuedate>
 <requesteddeliverydate>2001-01-15</requesteddeliverydate>
</orderheader>
<listoforderdetail>
 <orderdetail>
 <baseitemdetail>
 <lineitemnum0</lineitemcount>
 <supplierpartnum>4711</supplierpartnum>
 <qunatity>2</quantity>
 <notes></notes>
 </baseitemdetail>
 <baseitemdetail>
 <lineitemnum0</lineitemcount>
 <supplierpartnum>1204</supplierpartnum>
 <qunatity>4</quantity>
 <notes>ship sea packed</notes>
 </baseitemdetail>
 <baseitemdetail>
 <lineitemnum0</lineitemcount>
 <supplierpartnum>9999</supplierpartnum>
 <qunatity>11</quantity>
 <notes>print ‘handle with care’ on package</notes>
 </baseitemdetail>
 </orderdetail>
</listoforderdetail>
<ordersummary

Business-to-business (‘b2b’) SPECTO manual

SPECTO - 146 - NLS

</ordersummary>

Properties

Properties are set in scripts using the ‘set’ command. Here, only the properties specific for
b2b are described, see chapter ‘Object hierarchy – URLs’ for other properties.

Property name Description Allowed values / examples
b2bMode set b2b mode, 0 = no b2b

specific behaviour
numeric, (default is ‘0’)

b2bTransferEnvelope empty = none, symbolic name
of text-area else. (link name in
frame = ‘%%link%%)

symbolic name (default is
empty)

b2bContentEnvelope empty = none, symbolic name
of text-area else. (link name in
frame = ‘%%link%%)

symbolic name (default is
empty)

b2bAsyncResponse the response is transmitted
asynchronously and should be
waited for

true, false (default is ‘false’)

 SPECTO manuals

SPECTO - 147 - NLS

E-mail server

The SPECTO engine can act as a server incoming for e-mails. B2B applications may send
e-mail messages to the SPECTO engine which processes them by a custom script.
The script specified in attribute ‘EmailInScript[src]’ is executed for every incoming message
in the context of the client specified in attribute ‚EmailInClient[src]’.
Setting the attribute ‚EmailInDebug[src]’ to ‚true’ enables the generation of detailed
messages during the script processing.
The specified script is called with three parameters containing the sender, the subject and
the message body.
The E-mail server processing must be enabled by setting attribute ‚EmailInEnabled[src]’ to
‚true’. The E-mails are read from post offices specified in attributes EmailInSource[src]
(‘src’ being a unique identifier, valid examples are ‘EmailInSource’, ‘EmailInSourceFirst’);
with the value structured as ‘hostname[;inbox]:username:password’ (examples:
‘www.gmx.de:ussp345:secret’, ‘mail.nls.de;in01:gspecto:guest’).

Example E-mail server script :

// script=js
// Server for incoming e-mails

if (specto.args.length != 3) {
 specto.log("E-mail: args=" + specto.args.length +" ?");
}
else {
 specto.log("Processing e-mail from " + specto.args[0] +

"; subject: " + specto.args[1]);
}

XML server

The SPECTO engine can act as a server for XML queries. B2B applications may send
XML messages to the SPECTO engine which processes and returns them.
The script specified in attribute ‘XMLInScript’ is executed for every incoming message in
the context of the client specified in attribute ‚XMLInClient’.
Setting the attribute ‚XMLInDebug’ to ‚true’ enables the generation of detailed messages
during the script processing.
The specified script is called with one parameter containing the complete XML message.
The result of the script is returned to the sender of the XML message
The XML server processing must be enabled by setting attribute ‚XMLInEnabled’ to ‚true’.

Example XML server script :

// script=js
// XML incoming calls

var result = "";
if (specto.args.length != 1) {
 specto.log("XML: argus=" + specto.args.length +" ?");
}
else {
var xmlBody = specto.getXMLObject(specto.args[0]);
var xmlComponent = xmlBody.getFirst("");

 SPECTO manual

SPECTO - 148 - NLS

var numComponents = 0;

 while (xmlComponent != null) {
 specto.log(xmlComponent.getContent());
 xmlComponent = xmlBody.getNext("");
 numComponents++;
 }
 result="<answer>XML answer from script \"xml_in\": " +
 numComponents + " components</answer>";
}

// return content of variable result
result;

SOAP server

The SPECTO engine can act as a server for SOAP queries. B2B applications may request
SOAP queries from the SPECTO engine which processes and answers them. The
processing is similar to the XML server (see chapter before), the script specified in attribute
‘SoapInScript’ is executed for every incoming message in the context of the client specified
in attribute ‚SoapInClient’.
Setting the attribute ‚SoapInDebug’ to ‚true’ enables the generation of detailed messages
during the script processing.
The specified script is called with three parameters, the first parameter is the content of the
SOAPAction HTTP header, the second parameter is the complete SOAP Header and the
third parameter is the complete SOAP body. The result of the script is packaged into a
valid SOAP response and returned to the sender of the SOAP query.
The SOAP server processing must be enabled by setting attribute ‚SoapInEnabled’ to
‚true’.

Example SOAP server script :

// script=js
// SOAP incoming calls

var result = "";
if (specto.args.length != 3) {
 specto.log("SOAP: args=" + specto.args.length +" ?");
}
else {
var soapAction = specto.args[0];
var xmlHead = specto.getXMLObject(specto.args[1]);
var xmlBody = specto.getXMLObject(specto.args[2]);
var xmlMet = xmlBody.getFirst("");
var numMethods = 0;

 while (xmlMet != null) {
 specto.log(xmlMet.getContent());
 xmlMet = xmlBody.getNext("");
 numMethods++;
 }
 result = "SOAP answer from script \"soap_in\": " +
 numMethods + " method calls.";
}

// return content of variable result
result;

 SPECTO manuals

SPECTO - 149 - NLS

Port/socket services and port/socket server

The SPECTO engine can act as a server for incoming socket/port calls. Multiple port
services may be active at the same time. It is also possible to generate TCP port
connections, TCP port connections with transmissions, and UDP transmissions.
Any incoming port/socket request is handled by a script; the script name is specified
during the definition of a port service.

The ‘pl’ command group is used to manage port services and port requests, e.g. ‘pl l’ lists
currently defined services :

SNMP trap server

The SPECTO engine can act as a server for incoming SNMP traps. Multiple SNMP trap
services may be active at the same time. Any incoming port/socket request is handled by a
script; the script name is specified during the definition of a port service.

Advanced B2B features SPECTO manual

SPECTO - 150 - NLS

Advanced B2B features

(provided as ‘experimental’ with release 1.60; will be operational with release 1.62 of
SPECTO).

WSDL (‘web services description language’)

WSDL (‘web services description language’) is an XML format for describing interface,
protocol bindings and the deployment details of network services as a set of endpoints
operating on messages containing document-oriented or procedure-oriented information.

SPECTO maintains WSDL documents as textareas and provides special script commands
to modify them :

<value> = wsdl.tModel.getTag <wsdl-doc> <tag>
<lastValue> = wsdl.tModel.setTag <wsdl-doc> <tag> <setValue>
<value> = wsdl.tModel.getAttribute <wsdl-doc> <tag> <attribute>
<lastValue> = wsdl.tModel.setAttribute <wsdl-doc> <tag> <attribute>

<setValue>

Procedure for communicating WSDL information :

• copy from a WSDL-schema textarea to a variable
• modify the variable’s content using wsdl… commands
• transmit using SOAP with SOAP wrapper ‘SOAP-wsdl’
• analyze result

SPECTO can access WSDL endpoints using SOAP 1.1, HTTP and MIME. Within
SPECTO WSDL is primarily used for access of UDDI registries.

UDDI (‘universal description, discovery and integration’)

UDDI (‘universal description, discovery and integration’) is a specification for accessing
registries using SOAP and XML, eventually via WSDL.

SPECTO UDDI service is implemented for UDDI 2.0, featuring ‘inquiry’ and ‘publishing’.
It can be used in various situations :

• Monitoring of a public or private UDDI operator site
• Alerting on changes in specific UDDI entries
• Actualizing information necessary for a monitor from an UDDI registry

Features new with UDDI 2.0 support :

• Definition of relationship data

 SPECTO manuals Advanced B2B features

SPECTO - 151 - NLS

• validated classification and identification

Format

The syntax for the URL is :
uddi:<URL>:<accesstype>

with <accesstype> being ‘soapSPEC’ or ‘wsdlSPEC’.

The following parameters, according to the JMS specification are available :

‘type’ UDDI transaction type (‘find’, ‘register’)
‘object’ UDDI object type (‘business entity’, ‘service’, ‘binding’, ‘tModel’)
‘content’ WSDL document (XML format)

SPECTO’s UDDI implementation may use HTTP and HTTPS as transport protocol.

The command ‘uddi’ gives an overview of the available UDDI subcommands.

Command ‘uddi l’ lists the currently defined functions :

Command ‘uddi s’ displays the current configuration :

Notification SPECTO manual

SPECTO - 152 - NLS

Notification

Whenever a HTML/XML is executed, a status is computed in the areas :

• Timeout
• TooLong
• Content
• User defined
• Wait loop

Any status area is then used to compute the corresponding error level. The status’ error
levels, minimum and maximum levels and the upper limit can be reviewed using the ‘no s’
command.

Whenever the maximum level of a status area is reached, a notification is added to the
notification list. When the minimum level of a status area is reached (coming from a higher
level) the corresponding notifications are removed from the notification list. Any entry in
the notification list is executed at regular intervals.

Notifications can be edited in detail following the notification entry link from the chain
configuration screen :

For any notification the error type for which the notification will be triggered. Also a script
(‘PBN’) can optionally be executed before the notification will be executed. In this script
the notification can be cancelled using the ‘notificationEnable’ property.

Notifications are processed in the separate notification engine. The following commands
are available :
‘no s’ List all current status counters (status with count 0 are not

shown)
‘no l’ List all current notifications
‘no d’ <chain-id>’ Delete a notification
‘no i’ <chain-id> <error-type> Add a notification manually (for test purposes)

 SPECTO manuals Notification

SPECTO - 153 - NLS

Available types of notifications :

Email notification

Whenever a notification is active an email to the supplied address will be send. The
notification type for this interface ‘E’, the configuration is “command_name”; the
parameter string is of the format “clients-name@clients-host”.
Sending of emails requires SPECTO to have an email connection. The underlying
operating system has to be enabled for email processing (separate client software) and the
attribute ‘MailHost’ must be set to valid SMTP server. The senders address can be
configured in the ‘MailFrom’ attribute.
In case of problems with the processing of emails the ‘MailDebug’ attribute may be set to
‘true’ (otherwise ‘false’) to turn on advanced reporting during email processing.

FAX notification

Whenever a notification is active a operating system command may be configured. The
notification type for this interface ‘F’, the parameter string is a fax number.
FAX notifications are implemented using a smtp or web interface to the FAX service
supplier.
FAXType Type of the FAX service

 0 = NLS via SMTP
 1 = NLS via web
 10 = Promedia via SMTP (the default)
FAXProvider Id (e.g. email-address) of the FAX service provider
FAXUsername Logon name for the FAX service
FAXPassword Logon password for the FAX service

SMS notification

Whenever a notification is active a operating system command may be configured. The
notification type for this interface ‘S’, the configuration is “command_name”; the
parameter string is the telephone number of a mobile phone”.
SMS notifications are implemented using a web or smtp interface to the SMS service
supplier. The following attributes are available to configure SMS service :
SMSType Type of the SMS service
SMSProvider 0 = NLS via SMTP
 1 = NLS via web
 10 = Promedia via SMTP (the default)
SMSProvider Id (e.g. email-address) of the SMS service provider
SMSUsername Logon name for the SMS service
SMSPassword Logon password for the SMS service

Telephone notification

Notification SPECTO manual

SPECTO - 154 - NLS

Whenever a notification is active a operating system command may be configured. The
notification type for this interface ‘T’, the configuration is “command_name”; the
parameter string is of the format “client:chain:delay:result”.
Telephone notification requires a programmed voice-type modem attached to port ‘com1:’
(Windows NT) or ‘/dev/com0’ (Unix).

Native command notification

Whenever a notification is active a operating system command may be configured. The
notification type for this interface ‘O’, the configuration is “command_name”; the
parameter string is of the format “client:chain:delay:result”.

Java class notification

Whenever a notification is active, a configurable Java method in a class (loaded by
‘ClassByName’) may be called. The notification type for this interface ‘J’, the configuration
is “class:method:”; the result string is of the format “client:chain:delay:result”.

SNMP notification

Whenever a notification is active, a SNMP trap (versions 1, 2 or 3) may be send to a
network management application on the machine specified in the ‘notification’ address
field. The trap may be configured using a set of attributes which have to be entered in the
‘message’ part of the notification. The format is :
‘attribute-name’=‘attribute-value’; the individual attribute specifications
separated by a space character. Example: ‘version=2 community=germany generic=2’

Supported attributes :

Attribut Values Example Description
port numeric 163 Listening port on the target machine

(default = 162)
version 1, 2, 3 2 SNMP version (default = 1)
enterprise String 1.1 SNMP enterprise (default = 1.1)
specific 0, 1, … 0 Type of trap in version 1 (default = 0)
generic 1, 2, … 4 Type of generic trap in version 1

(default = 1)
mib ‘dotted’ mib -

format
1.3.1.6 Enterprise specific mib; overrides

‘generic’ setting
uptime Numeric

(milliseconds)
1000 Adds an ‘uptime’ (1.3.6.1.2.1.1.3(.0))

entry
contact String contact Adds an ‘contact’ (1.3.6.1.2.1.1.4.0) entry
community String ec SNMP community (default = public)
context String ctx1 SNMP context (version 3 only) (default

= blank)
protocol MD5, SHA1 SHA1 Protocol (version 3 only) (default =

 SPECTO manuals Notification

SPECTO - 155 - NLS

MD5)
user String User Version 3 authentication user name
password String Pwd Version 3 authentication user password
privacy String Privacy Version 3 authentication privacy

password

The following ‘generic’ values are implemented :

Id description Mib
0 cold start 1.3.6.1.6.3.1.1.5.1
1 warm start 1.3.6.1.6.3.1.1.5.2
2 link down 1.3.6.1.6.3.1.1.5.3
3 link up 1.3.6.1.6.3.1.1.5.4
4 authentication failure 1.3.6.1.6.3.1.1.5.5
5 egpNeighborLoss 1.3.6.1.6.3.1.1.5.6
6 enterprise specific (use

attribute ‘mib’ to specify
the value)

1.3.6.1.6.3.1.1.5.7

Example :

SOAP notification

Whenever a notification is active, a configurable SOAP message may be initiated.
The SOAP target (system and function) is configured in column ‘notification’ :

‘function:hostname’ or ‘function|hostname’.
The SOAP function’s parameters are configured in column ‘message’ :

‘parameter1=value1;parameter2=value2;…’.

Example :

SAP R/3 notification

Whenever a notification is active, a configurable R/3 (RFC capable) function module may
be called. This requires the SAP R/3 Java JRFC library installed on the SPECTO system.
The notification type for this interface = ‘R’, the configuration is
‘hostname:systemnumber:userid:password:clientid:functionname:import_parameter”; the
result string is of the format “client:chain:delay:result”.

Example :

Notification SPECTO manual

SPECTO - 156 - NLS

HP OpenView/VantagePoint integration

SPECTO can notify a HP openview/vantagepoint system management instance using the
openview ‘opcmsg’ interface. The vantage point ‘a’ parameter is set to ‘specto’, the ‘o’
parameter to ‘WWW’.
The ‘msg_text’ parameter consists of the field/value pairs :

• ‘Problem’ with ‘report’ if a problem exists, or ‘release’ if a problem has disappeared.
• ‘for’ identifies the object in client/chain/url notation
• ‘type’ error type; values are ‘Timeout’, ‘TooLong’, ‘Content’ or ‘Custom’
• ‘at’ the time when the event happened
• ‘note’ the ‘notification’ field of the SPECTO chain configuration screen

SAP R/3 CCMS integration

Overview

The SPECTO to CCMS interface allows the monitoring of various status objects of
SPECTO instance(s) and the customization of selected SPECTO objects.

Release 1.0 : view of notification status
Release 1.5 : view of SPECTO customizing
Release 2.0 : change of selected SPECTO customizing

SPECTO assistance : notifications

The SPECTO notification object attributes, active notifications, and status counters of the
notification engine are made available.

SPECTO assistance : object hierarchy

The SPECTO object hierarchy is made available for reading to the CCMS interface.

SPECTO assistance : commands

The SPECTO command interpreter can be accessed via CCMS.

Node hierarchy

SPECTO SPECTO root node

 SPECTO manuals Notification

SPECTO - 157 - NLS

 SPECTONet net ??
 engine engine summary node
 clients[] client[] summary node
 chains[] chain[] summary node

 notifications[] notifications node
 status[] status node
 measuredData[] data performance node

Operation

Preconditions

The attribute “R3Interfaces” must be set to “true” to enable SPECTO-R3 functionality.

Creation of CCMS objects

Before the CCMS integration is operable and whenever attributes are changed, the relevant
CCMS objects must be created using command ‘it ci’.
note: CCMS integration should not be activated before/during this operation

Continous operation

CCMS integration is activated by setting attribute ‘CCMSActivation’ to ‘true’ followed by
command ‘it cr’ or a SPECTO engine restart. During operation some parameters can be
changed by modifying the corresponding attributes and rereading them using command ‘it
cr’.

Status & Logging

CCMS status can be inquired using command ‘it cs’. CCMS log verbosity can be set using
command ‘it cv <verbosity>’, with verbosity ranging from ‘0’ (no messages) to ‘3’ (all
messages), default verbosity is ‘1’.

Technical implementation

The SPECTO CCMS interface is based on JMonAPI, a java based front for CCMS clients,
supplied by SAP. The interface type is active, any changes of object values will be
transmittedt to the jmon client at regular (default 5000 milliseconds, customizable with
attribute ‘CCMSRefreshPeriod’).

Defined objects :

object Value parent description
AnalysisMethod SPECTO
RootNode SPECTO -
SummaryNode
ObjectNode

Notification SPECTO manual

SPECTO - 158 - NLS

StatusLine

Installation

CCMS integration is a standard part of the SPECTO product. To activate it, the following
additional measures have to be taken :
installation of the R/3 client protocol
installation of the R/3 JRFC libraries
installation of the CCMS client
installation of the JmonApi java runtime
inclusion of the JmonApi libraries into the SPECO CLASSPATH
customizing of the CCMS parameters in SPECTO
customizing of the CCMS parameters in R/3

1. Installation of the R/3 client protocol

By installation of the SAPGUI component. (maybe not necessary, but a working SAPGUI
connection is a good proof of a correct connection).

2. Installation of the R/3 JRFC libraries

By execution of the SAPGUI’s JRFC installation.

3. Installation of the CCMS client

Windows nt/2k/xp :
The library ‘jmonslib.dll’ must be copied to the windows system directory.
The application ‘sapccmsr.exe’ must be installed and tested according to the SAP
documentation.

UNIX :
n/a

4. Installation of the JmonApi java runtime

The following java libraries are accessed by SPECTO’s CCMS interface :
jmonapi.jar
logging.jar
They must be copied to the SPECTO installation.

5. Inclusion of the JmonApi libraries into the SPECO CLASSPATH

The following libraries are accessed by SPECTO’s CCMS interface :
com.sap.rfc.*
com.sap.rfc.exception.*

 SPECTO manuals Notification

SPECTO - 159 - NLS

com.sap.mona.api.*

This can be accomplished by copying the libraries into the existing SPECTO classpath or
(preferred) by adding their location to the SPECTO classpath during SPECTO startup
(script ‘init’). Example:

set CLASSPATH=%CLASSPATH%d:\jdk1.3\lib\jmonapi.jar;
set CLASSPATH=%CLASSPATH%d:\jdk1.3\lib\logging.jar;

6. Customizing of the CCMS parameters in SPECTO

The following attributes specify SPECTO’s CCMS interface :

attributename default ‘it cr’
aware

description

CCMSActivation false yes must be ‘true’ for CCMS integration to be
activated.

CCMSR3Host no the R/3 hostname or IP address
CCMSR3System 00 no the R/3 system number
CCMSR3Client 100 no the R/3 client number
CCMSRefreshPeriod 5000 yes the refresh period of SPECTO object status

changes to the CCMS client. In milliseconds
CCMSRootNode SPECTO yes name of the SPECTO root node in the CCMS

hierarchy

The attributes may be client-specific.

7. Customizing of the CCMS parameters in R/3

By usage of transaction RZ21 :

Forwarding of notifications / NLS notification services

Most SPECTO notifications are based on emails. However, when an email infrastructure
(SMTP/POP3/IMAP4) is not present at the client’s location, email-bound notifications
may be forwarded to another SPECTO instance using SOAP messages via standard HTTP
protocol.

Notification forwarding is enabled by (‘Customizing’-‘mail transport’) setting attributes
‘MailViaSOAP’ to ‘true’, and specifying the URL of the serving SPECTO engine in
attribute ‘MailHostSOAP’. The serving SPECTO engine must have incoming SOAP
enabled (see chapter ‘SOAP server’).

Notification SPECTO manual

SPECTO - 160 - NLS

Notification forwarding via SOAP may also be used as a backup for SMTP based mail
transport: If attribute ‘MailBackupViaSOAP’ is set to true, whenever a mail sent using
SMTP protocol fails, an alternate access via SOAP is executed.

If there is no SPECTO instance with access to an email infrastructure, forwarding may also
occur to one of NLS’ hosted SPECTO instances.
In this case the demo URL is : http://www.NLS.de/Specto/SpectoHome

 SPECTO manuals User management

SPECTO - 161 - NLS

User management

Standard

The SPECTO admin user account’s name and password is maintained in attributes
‘MasterUser’ (the logon name, default is ‘specto’), ‘MasterPassword’ (the logon password)
and ‘MasterClient’ (for the active client after logon, default is ‘0’). The admin account is
not, and cannot be limited in rights within the SPECTO engine.

For any client a client specific user entry is automatically created. The default password is
the same as the username and the client name. The password may be changed using
command :
‘pw <new_password> <new_password> [<client_id>]’.
If a client’s name is changed (using command ‘cn <new_client_name>’), the password is also
set to the client’s new name.
A client user has only access to ‘his’ client, it may be disabled for changes by setting the
(client specific) attribute ‘ReadOnly’ to ‘true’ (menu: ‘customizing’ – ‘security’). A client
user cannot access the standard attributes; any attributes operations of a client user will
automatically prefix the attribute name with a ‘_’ character, so that the client user may store
private information using SPECTO’s attribute mechanism but cannot read or modify the
standard attributes.

Enhanced

In addition to the standard user management the SPECTO engine features an enhanced
user management allowing for a much grainer specification of users and rights as the
standard user management. Enhanced user management must be enabled by setting
attribute ‘UsersEnable’ to true (menu: ‘customizing’ – ‘users’); (requires engine restart).

Users and rights are maintained using command ‘us’ (menu: ‘maintenance’ – ‘users’).
Recommended usage is the command ‘us l’ (menu entry ‘list users & rights’); the picture
below shows a sample ‘us l’ result screen layout :

User management SPECTO manual

SPECTO - 162 - NLS

Users may be added and deleted by using the relevant links; for a new user its name,
password and a description have to be entered. By default, a new user has no rights within
the SPECTO engine; at least the ‘engine logon’ right has to be assigned to the user.
Assigning rights is done via the ‘add right’ link in the user row. In the following panel the
right has to be selected from a list, and the ‘object’ and the right’s ‘value’ concerning the
object has to be entered. ‘object’ and ‘value’ are specific to the right, so they have to be
correctly entered and cannot be selected from a list.
An ‘object’ is always a part of the SPECTO engine, e.g. clients, chains, the notification
engine, the batch processor. The object column allows for lists (items separated by comma
‘,’) and ‘*’ as a selector for all objects.
The ‘value’ describes the level of access within the right which is granted to the object.

Several entries (rows) may be added for a right;/object in that case the ‘value’ fields are
concatenated. The following table lists the currently available rights and their ‘object’ and
‘value’ specification :

Right description object value example

(object,
right)

Client.access * not yet implemented *
Engine.
allowClients

Enabled clients. A ‘:’ separated
list of client
names; or ‘*’
to allow all
clients

demo:test:

Engine.logon Logon via browser (the
most basic right, usually
required for all users)

- -

Command.
allowAdmin

Allowing commands
normally reserved for
the administrator

 A ‘:’ separated
list of the
allowed
commands

st:lc:

Command.
limitChains

Restricting the access to
the specified chains (If
not specified all chains
of the client are
allowed)

A ‘:’ separated
list of client
names

A ‘:’ separated
list of chain
names

firstChain:
thirdChain:

Command.
limitCommands

Restricting access to the
specified commands (If
not specified, all non-
administrator
commands are allowed)

 A ‘:’ separated
list of the
allowed
commands

rg:rh

Users.edit Access to the user
management

 true / false
(default)

Exits.edit Access to the exits
management

 true / false
(default)

Batch.edit Access to the batch
engine

 true / false
(default)

Any assigned or removed user and right comes in effect immediately (no engine restart
required.

 SPECTO manuals Engine management

SPECTO - 163 - NLS

Engine management

Health check

The SPECTO engine’s own status may be inspected by menu ‘engine’ (command ‘cs’) :

Statistics

The ‘statistics’ link (see screen above) displays absolute and average values of key
parameters of the engine (requests, measurements, commands, incoming calls, database).

Monitor

The ‘checks’ link (see screen above) displays details about the current configuration of the
database table size checks and allows for their customization.

Engine management SPECTO manual

SPECTO - 164 - NLS

Working with files

Though all SPECTO data is stored in a relational database, for reasons of data transfer and
upgrades there is some need to handle files in a SPECTO environment.

Using files some care has to be taken to differentiate between the various locations where
the SPECTO system may access files:

 Work station of the user
 SPECTO system web area
 SPECTO engine working area
 SPECTO engine code area (for engine upgrades)
 Central (NLS hosted) SPECTO upgrade area
 Central (NLS hosted) SPECTO transfer area

The diagram below shows the architecture of possible file locations, the commands to
transfer files between them, and the menu access to the commands :

Beside the necessary commands to transfer files there are additional commands (‘fc’, ‘fd’) to
copy or delete files within the locations.

Above commands work identically with the usage of the servlet (‘tomcat’) based or
SPECTO internal web-servers.

engine directory

web browser (PC)

‘website’ (at MATHESIS)

web base (servlet
or int. web server)

SPECTO system

working directory

fl

fs

fse

down

up

flmfsm

dir fca

down fcw

‘upgrade’ (at MATHESIS)

engine f

fdw

fda

 SPECTO manuals Database management

SPECTO - 165 - NLS

Database management

The SPECTO engine features an adaptive database interface with caching and recover mechanisms.

Database connections and recovery

It is recommended to use command ‘db’ or menu entry ‘maintenace – database’ to maintain
the database engine.
The according customizing is done using menu entry ‘customizing – database’.

Delayed write

Database writes to result and logging tables may be (recommended) cached by the database
interface.
It is recommended to use command ‘dw’ or menu entry ‘maintenace – delayed write’ to
maintain the database engine. The according customizing is done using menu entry
‘customizing – database’.

Attribute cache

All attributes are cached by the database interface.

Command ‘ac’ or menu entry ‘maintenace – attribute cache’ may be used to maintain the
caching status of attributes.

Document cache

Documents (also used for all scripts including (‘PBC’, ‘PAC’, …) are cached by the
database interface.

Command ‘ca’ or menu entry ‘maintenace – documents’ may be used to maintain the caching
status of documents.

Operator messages

On any incident occurring within the SPECTO engine operator messages are created. The
current list of operator messages can be viewed using menu entry ‘engine’ – ‘operator
messages’.
Open operator messages are identified by a red link within the title of the main sub screen.

‘am alive’ messages SPECTO manual

SPECTO - 166 - NLS

Operator messages may be forwarded to a supervisory system using the same interfaces as
‘notifications’ or the ‘am alive’ processor.

Operator messages are customized (menu ‘customizing’ – ‘operator messages’).

‘am alive’ messages

The SPECTO engine may forward periodic ‘am alive’ messages to a supervisory system
using the same interfaces as ‘notifications’ or the ‘operator messages’.

‘Am alive’ messages are customized (menu ‘customizing’ – ‘am alive’).

Time base / NTP

The SPECTO engine features a configurable time base with optional synchronization from
a hierarchy of NTP servers.

Command ‘nt’ or menu entry ‘maintenace – time base’ may be used to maintain the time base.
The according customizing is done using menu entry ‘customizing – time base / NTP’.

Limits

The SPECTO engine periodically checks the sizes of several database tables and gernates
operator messages if configured limits are reached..

The table size limits are customizable (menu ‘customizing’ – ‘limits’).

Auto export

The SPECTO engine allows for automatic daily export of all or changed client
configurations.

‘Auto export’ is customizable (menu ‘customizing’ – ‘auto export’).

 SPECTO manuals SPECTO execution extensions

SPECTO - 167 - NLS

SPECTO execution extensions

Customer exits

Introduction

The SPECTO engine provides for user exits at every major event of its execution. The user
exits are realized as dynamic java functions called by the ‘class.forName()’ mechanism of
Java.

To simplify the method invocation, currently every exit has exactly two parameters of type
‘String’ and always returns a ‘String’ parameter. The first parameter denotes the Specto
engine id as it is defined in the attribute ‘SNThisNode’; the second parameter is specific to
the type of exit, normally is compound by several sub parameters which are separated by
colons.
Therefore the definition of a valid method should be like :
 public static String demo (String id, String param) …

Note that any exit function must be part of the Specto package, hence must include the
‘package Specto;‘ statement.

Exits can be tested using the ‘te <class> <method> <parameter>’ command.

Sample code

The following example can be used as a starter; and should be placed in a file named
‘SpectoExitDemo.java’. The compiled .class file has to be at the same place as the other
SPECTO engine .class files. A precompiled version is already included in the SPECTO
engine.

The example can be tested using ‘te Specto.SpectoExitDemo demo x’.

package Specto;

public class SpectoExitDemo {

// constructor
 SpectoExitDemo () {
 System.out.println("Initialize 'SpectoExitDemo'");
 }

// demonstration method
 public static String demo (String id, String param) {
 String result;

 result = "From: " + id + "; got: " + param;
 return result;
 }
} // end of class SpectoExitDemo

Exits with customer supplied class/methods

In some cases the class and its method can be specified by the customer. E.g. custom
notifications are realized using this feature. The exit has to be specified using the syntax :

SPECTO execution extensions SPECTO manual

SPECTO - 168 - NLS

‘class.method:id’. The id is optional; if supplied it will be appended to the parameter String
during the method invocation.
Examples : Specto.myClass.myMethod
 Exits.genericExitClass.primaryExit:homeURL

Summary of exits available in the SpectoEngine

The exit technology is a key feature of SPECTO and therefore NLS is keen in including
exits wherever it is of interest for our customers. Just contact us if the above list does not
fulfill your requirements.

The exits are maintained using command ‘ex’ :

Any exit can be individually enabled and instead of the default class/method an own
class/method can be configured.

Example of an exit (coded in the java programming language) extracted from the
SpectoStandardExits.java source model (available on demand) :

/*
 * application SPECTO
 * module standard exits
 *
 * date author reason
 * ---
 * 03.01.2001 - creation
 * 21.01.2001 - callbacks 'getData()', 'executeXML()'
 * 23.01.2001 - exit 'heartbeat()'
 * 22.05.2001 - inclusion of 'clientId' for client
 * specific exits.
 *
 */

//
// SPECTO exits - standard delivery
//
// (c) NLS GmbH 2001
//
// this source must be compiled in the same directory (...\Specto\) as the Specto
// .class files because javac will have to read them to resolve some of the
// methods used here.
//
// SPECTO provides for custom exits also. They can be included here, but it is
// recommended to use a separate source file instead.
//

package Specto;

public class SpectoStandardExits {

 SPECTO manuals SPECTO execution extensions

SPECTO - 169 - NLS

// constants
public static final int EXITS_NOLOG = 0;
public static final int EXITS_LOGTOCONSOLE = 1;
public static final int EXITS_LOGTOCONSOLEANDDB = 2;

// class variables
private static int levelLog = EXITS_LOGTOCONSOLE; // default: log to console

// constructor
 SpectoStandardExits () {
 SpectoMain.Log.Log("Initialize 'SpectoStandardExits'");
 setLogExit(EXITS_LOGTOCONSOLE);
 }

// set console/log-logging
 public static int setLogExit (int levelLog) {
 return SpectoStandardExits.levelLog = levelLog;
 }

// write log entry
 private static void writeLogEntry (String text) {
 switch(levelLog) {
 case EXITS_LOGTOCONSOLE :
 SpectoMain.Log.LogNoDB(text);
 break;
 case EXITS_LOGTOCONSOLEANDDB :
 SpectoMain.Log.Log(text);
 break;
 }
 }

//
// SPECTO exits start here.
//
// It is recommended not to include your extensions into the exit methods
// itself but to implement separate methods and call them from the exits.
// This eases adaption of exit definitions changed by NLS...
//
// In this default implementation none of the exits 'does' anything
// besides writing log-entries and returning a mirror of the input data.
//

// the 'id' paramter holds the name of the instance.
// the 'param' parameter contains a concatenation of exit-specific
// values.

// Within any exit the following SPECTO methods (all can, but only those
// are 'guaranteed') may be called:
// int SpectoMain.getClient();
// SpectoData SpectoMain.getData(int clientId);
// String SpectoMain.Command.executeXML(String command);
//

// called during intialize phase of engine (happens at several places)
 public static String engineInitialize (String id, String param) {
 String result;

 result = "EngineInitialize From: " + id + "; got: " + param;
 writeLogEntry(result);
 return result;
 }

...

SAP R/3 command line interface (CLI)

R/3 transaction ‘YSC1’ provides a command line interface to a SPECTO instance. CLI is
available for R/3 rel. 4.0b and above; it does not support graphical and formatted (HTML)
representations of SPECTO commands.
This requires the SAP R/3 Java JRFC library installed on the SPECTO system.

Remote execution sample code

SPECTO commands may be submitted using a TCP/IP socket connection. Sample code
to demonstrate this capability is available upon request.

SPECTO execution extensions SPECTO manual

SPECTO - 170 - NLS

Batch execution

The SPECTO engine can execute commands in batch mode; Batch mode commands may
be scheduled for specified times and may be repeated at specified intervalls. Batch type
processing can be controlled by hand (e.g. for maintenance tasks like deletion of logs) and
is used by the chain engine for delayed execution.

Batch subcommands (following ‘ba’) :

View of current batch processes (‘ba l’) :

Example :

ba i ‘ld 20’ 120 true true

Above example inserts the command ‘ld 20’ for repeated execution every 120 minutes
starting immediately.

The result of statements run in the background can be examined using the ‘show’ link.

Script

The batch processor is available for SPECTO scripts as object ‘batch’; a reference to the
single instance may be retrieved by the method ‘getBatchInstance()’.
Sample code is available on request.

 SPECTO manuals SPECTO execution extensions

SPECTO - 171 - NLS

Background execution

Note: Any SPECTO command will continue execution still it is finished. If a new
command is started via a command line entry or by a click on a link during a previous
command is still executing, the output of previous commands will not be visible.

Therefore SPECTO can schedule commands to be executed in the background. Run status
of background commands may be inspected and after being finished the output may be
shown.

Background subcommands (following ‘bg’) :

View of current batch processes (‘bg l’) :

Example :

bg i ld 20

Above example schedules the command ‘ld 20’ (deletion of log entries elder than 20
days) for background execution. After scheduling is done a list of previous and current
background commands is shown.

Script

The background processor is available for SPECTO scripts as objects of class
‘SpectoBackground’; a reference to the list of instances can be retrieved by the
method ‘getBkgEntries()’.
Sample code is available on request.

SPECTO NET SPECTO manual

SPECTO - 172 - NLS

SPECTO NET

Overview

SPECTO instances are connected using SPECTO NET. SPECTO NET relies on the
email (‘SMTP’) transport layer to be able to work across firewalls. All instances of a
SPECTO NET share the same configuration data; all SPECTO NET masters hold the
summary of all SPECTO instances results data.. Events like notifications can be forwarded
within a SPECTO NET.

Architecture

Any SPECTO NET must consist of exactly one master and an arbitrary number of clients.
Clients can be of types ‘send only’ or ‘send and receive’. (because ‘send and receive’ clients
need a email mailbox which is sometimes more effort to configure, the ‘send only’ client is
included).
Any communication takes place between any client and the master, no client to client
communication will happen. Data distribution takes place in two phases; during phase one
any data is send from the clients to the master; in phase two the master sends, after
consolidation, the changed data to all clients known to him.
The master ‘auto learns’ about his clients; any client that has sent any data to the master
will be included into the list of clients.

Configuration

Preconditions & basic configuration

Any configuration is done using SPECTO attributes (see chapter ‘commands’ for
administration of attributes).

Any node must have a unique name (attribute ‘SNThisNode’), eg. ‘SPECTO12’ (maximum
12 characters.
Any node must have an email account (sending for non-master nodes; sending & receiving
for master nodes), (attribute ‘SNAccount’).
Non master nodes must have a ‘net master node’ entry (attribute ‘SNMasterNode’), this
has to be set to ‘master’ for a ‘net master node’.

Transfer cycles

The period of transfers can be configured in seconds (attribute ‘SNPeriod’); if not
maintained 30 minutes is assumed.

Transfer types

There are ‘full’ and ‘delta’ transfers. Full transfers transmit the complete configuration of a
node; they can only be initiated manually. Delta transfers transmit the changed data since
the last transfer; they are initiated automatically by SPECTO.

 SPECTO manuals SPECTO NET

SPECTO - 173 - NLS

Operation

Activation

SPECTO NET operation may be activated or deactivated. At startup attribute ‘SNStartUp’
(values ‘0’ or ‘1’) define if SPECTO NET will be activated.

Status

Current SPECTONet status may be viewed using the ‘snn i’ command :

A list of current nodes is available using ‘snn l’.

Additional commands

‘sn on’ Enable SPECTO NET
‘sn off’ Disable SPECTO NET
‘sn ft’ Initiate SPECTO NET full transfer
‘sn dt’ Initiate SPECTO NET delta transfer
‘sn st’ Display SPECTO NET status

Remote notification

Some SPECTO notification require additional infrastructure (software libraries or
hardware) which may not be available to all nodes within a SPECTONet. Remote
notification allows any client of a SPECTONet to forward its notification to the
SPECTONet master which will execute it. Remote notification is available to all
notification types and is selected by preceding the notification ‘level’ with a minus (‘-‘) sign.

SPECTO NET SPECTO manual

SPECTO - 174 - NLS

Sample configuration

The sample configuration shown below is a basic SPECTO NET with two clients and one
master. One of the clients is considered to be outside of a firewall and therefore needs a
separate SMTP mailer.

Typically a SPECTO instance hosted by NLS will be included in such a scenario.

SpectoNet Client 2 (other network as master):

SPECTONet:
SNIsMaster = false
SNMasterNode = spectomaster@inside.com
SNThisNode = clientA // at will, unique
SNThisNodeId = 3 // numeric, unique
SNThisNetwork = demonet // at will, ident.

MAIL:
MailHost = mailserveroutside.com
MailReceiveHost = mailserveroutside.com
MailReceiveEnabled = true
MailUser = spectoXXX
MailPassword = ...
MailFrom = SpectoClient1 // own id

SpectoNet Master ():

SPECTONet:
SNIsMaster = true
SNThisNode = master // at will,
SNThisNodeId = 1 // numeric, 0, unique
SNThisNetwork = demonet // at will, ident.
SNSyncPeriod = 500

MAIL:
MailHost = mailserverinside.com
MailReceiveHost = mailserverinside.com
MailReceiveEnabled = true
MailUser = spectoZZZ
MailPassword = ...
MailFrom = SpectoMaster // own id

SpectoNet Client 1 (same network as master):

SPECTONet:
SNIsMaster = false
SNMasterNode = spectomaster@inside.com
SNThisNode = clientB // at will, unique
SNThisNodeId = 2 // numeric, unique
SNThisNetwork = demonet // at will, ident.

MAIL:
MailHost = mailserverinside.com
MailReceiveHost = mailserverinside.com
MailReceiveEnabled = true
MailUser = spectoYYY
MailPassword = ...
MailFrom = SpectoClient1 // own id

Shown are the attributes necessary for a SPECTO NET configuration
(they can be edited using the ‘ae’, inserted with the ‘aw’ command). After
modifying attributes, the ‘sn c’, and ‘snn c’ commands will reread and
actualize the configuration.

In the example, the clients will send emails to :

‘SpectoMaster@inside.com’;

the master will send emails to :

‘SpectoClient1@inside.com’,

‘SpectoClient1@outside.com’.

SPECTONet configuration example

mailserveroutside.com firewall mailserverinside.com

internet maildomain ‚inside.com‘maildomain ‚outside.com‘

intranet

 SPECTO manuals SPECTO Customizing

SPECTO - 175 - NLS

SPECTO Customizing

Attributes

SPECTO is customized using attributes. Attributes can be set for the engine or for selected
clients.

The attributes are grouped according their functionality; and can be accessed via the menu.
Selecting a customizing group will open the attribute editor with the corresponding
selection of attributes and their description in the main page.

Attributes may be defined globally, for all clients (entry ‘client’ is set to -1) or for specific
clients. During attribute evaluation the SPECTO engine first tries to read the attribute
value for the current client. If there is none defined the engine tries to read the global
instance of the attribute. If there is even no global value the engine uses the default value.

Note that at every start of the SPCETO engine all missing attributes are recreated using
their default values. So in case an attribute was deleted without intention, and the correct
attribute name or value is not clear, it is sufficient to restart the SPECTO engine.

Attributes may also be created using the ‘aw’ command (aw AttributeName Value
[client]), or maintained using the ‘ae’ command (ae [name_prefix]). Attribute
names are not case sensitive, attribute values may be case sensitive.

The current attributes may be exported/imported as XML formatted files using menu
entries group ‘maintenance’ – ‘imp./ex.(xml)’ – ‘base data’.

Attribute maintenance is only available to the administrative user.

SPECTO Customizing SPECTO manual

SPECTO - 176 - NLS

Graphical User Interface

Coloring

The coloring of the SPECTO GUI can be
customized using the ‘color definition’ screen
(available via command ‘co’ or the menu
(‘environment’ – ‘change colors’) :

All color values are entered in hex (identified
by the preceding ‘#’ character) and consist of
the three two-digit values for the red, green
and blue components of the color. The higher
the value, the more intense is the part of the
selected color. (#000000 is white, #ffffff is
black).

Changes are activated using the ‘Execute’ button and come into effect immediately. If
made persistent using the ‘Persistent’ button they are saved as attributes GUIColor<Id>.
The current configuration can be read from the attributes using the ‘re-read’ button.

These color definitions also define the coloring of the text-base reporting. The graphical
based reporting uses attributes ‘GColor<Id>’ for coloring and is describes with the ‘rg’
command in the ‘Commands in detail’ section of this manual.

Page sizes

In the ‘client configuration’ and ‘chain configuration’ screens the number of lines displayed
on page can be set using the ‘page size’ (ps <clint> <chain>) command, by setting the
attributes ‘pageSizeClient’ and ‘pageSizeChain’) or using the menu entry ‘environment’ –
‘page sizes’.

If paging is enabled page scroll buttons will appear automatically.

Sessions

The users currently connected to a SPECTO engine can be verified using the ‘sl’
command.
Note: The web interface for the SPECTO engine is implemented as a ‘servlet’ which is
separate to the SPECTO engine. This servlet may service several SPECTO engines and
therefore also has to have some session information. The servlets session information may
be requested using the ‘ls’ command.

 SPECTO manuals Commands in detail

SPECTO - 177 - NLS

Commands in detail

General

The SPECTO engine is command driven. Commands are usually created by the user
interface but can also be entered directly in the command line (some special features are
currently only available via the command line.
Guidelines for the command line :

 ‘h’ or ‘?’ provides a command summary. (see screen shot below)
 Some commands can be called with the ‘ -?’ option to explain themselves in detail.
 Submitting an empty command repeats the last command
 Avoid usage of special characters like “ or ‘; they may result in strange behavior.

Overview of SPECTO commands (using command ‘h’)

Navigation

Command ‘na’ displays the tree-view guide to the SPECTO functionality. This is the
preferred way to work with the SPECTO engine.

Object hierarchy

The ‘el’ command; which displays a list of all chains of the current client, is the best starting
point for navigation through a SPECTO configuration.
Then the browser-links can be used to navigate within the chains and URLs. Alternatively
the commands ‘ec <chain-id>’ and ‘eu <chain-id> <URL-id’ are available for
navigation.

Commands in detail SPECTO manual

SPECTO - 178 - NLS

Create a new client

SPECTO is client aware. During login, the current client is selected by the user id. All
commands related to client management require administrator privileges.

Available commands :
 ‘cc’ <client name> Creates a new client with the specified name. The new client

already contains an initial chain. Also a user id / password (both with the
same name as the client) are created. Currently a ‘dg’ (reload client)
command must be executed after the ‘cc’ command !

‘sm’ <client id> Switch to the specified client.
‘lc’ Shows a list of all defined clients.
‘cn’ <name> Rename a client (including its username and password).

Configure the client

SPECTO is client aware. During login, the user id selects the current client. The ‘el’
command displays the current client’s configuration, basically a set of chains. In the ‘action’
part of any chain, commands can be entered; valid commands are :

• add a new chain after the selected chain.
• delete the current chain
• analyze the page
• test the page configuration

Available commands :
 ‘el’ selects the list of chains for configuration.

Configure a chain

Any chain exists of an ordered set of URLs and an not ordered set of notifications. In the
‘action’ part of any URL or notification, commands can be entered; valid commands are :

‘a’ add a new URL after the selected URL.
‘d’ delete the current URL

Available commands :
‘ec’ <chain> selects the chain for configuration.

Configure a web page

In the ‘action’ part of any URL parameter/content, commands can be entered; valid
actions are :

• adding a new chain after the selected chain.
• delete the current chain
• starting a chain processing as a new process

 SPECTO manuals Commands in detail

SPECTO - 179 - NLS

• stopping all processes of the chain

Available commands :
 ‘eu’ <chain> <URL> selects the URL for configuration.

Copying items

Clients, chains and URLs can be copied. For every item the target (‘<to>’) must exist and
must have the name ‘copy’. If a copy is issued from the web front end’s ‘action’ field, the
rename of the target to ‘copy’ must not be in the same transaction as the copy itself.

Available commands :

Copying a client
 ‘dc’ ‘cl’ <from> <to> copy client <from> into client <to>.

Copying a chain
 ‘dc’ ‘ch’ <from> <to> copy chain <from> into chain <to> within the current client.

Copying an URL
 ‘dc’ ‘url’ <fromChain> <fromURL> <toChain> <toURL> copy URL <fromURL>

of chain <fromChain> into URL <toURL> of chain <toChain>.

Start/Stop processing a chain

Available commands :
‘sc’ <chain id> … starts processing of one or multiple chains. Multiple chains may

be started with one ‘sc’ command by applying their ids separated by spaces.
‘kt’ <chain id> stops a chain process
‘lt’ list all active chain processes

‘st save’ store the current process list as startup (all processes which are currently

active will be automatically started at next SPECTO start).
‘st list’ list the currently defined startup processes.
‘st start’ start the currently defined startup processes.
‘st delall’ delete all startup processes (reserved for administrator).

Reporting

SPECTO provides some basic reporting mechanisms and an archiving function.

Available commands :
‘ra’ <days-back> moves any data older than <days-back> from the reporting tables into

the archive.
‘rd’ deletes all entries of the reporting archive
‘re’ display the status codes definition
‘ro’ <days-back>’ gives an overview on available data.

Commands in detail SPECTO manual

SPECTO - 180 - NLS

‘rh’ <days-back> <chain> [<type> [<limit> [<start-hour> [<num-hours>]]]]

]
 provides a tabular representation in with one chain measurement per line;

(the ‘rhl’ variant provides a denser view). If the last digit of <type> is ‘1’ a
download option is provided; if ‘type’ is larger than 9 ‘type’ div 10 is the
number of days (default is one) to report. Instead of <days-back> a date in
American or German syntax can be used; such dates must be quoted.

Example 1 : ‘rh 1 0’ reports yesterday’s result of chain 0.
Example 2 : ‘rh ’23.12.00’ 2 30’ reports result of chain 2 from 12/23 to 12/25.

‘rg’ <days-back> <chain> <type> [<limit> [<start-hour> [<num-hours>]]]
 gives a graphical representation. ‘type’ 0 is bar, 1 is line type display. If ‘type’

is larger than 9 ‘type’ div 10 is the number of days (default is one) to report.
Instead of <days-back> a date in American or German syntax can be used;
such dates must be quoted.
<limit> overrides the automatically computed vertical axis with the
supplied value. With <start-hour> / <num-hours> a part of the day may
be selected.

Example 1 : ‘rg 0 2 0’ generates a drawing of today’s result in ‘bar’ type format.
Example 2 : ‘rg 7 1 31’ generates drawings from 7 to 5 days back in ‘line’ type format.
Example 3 : ‘rg ‘6/28/00’ 0 1 5000 11 3’ generates drawing of June 28th, chain 0 from

11:00 to 14:00 o’clock.

The colors of the generated graphs can be set using the ‘Gcolor<Id>’
attributes, where <Id> is : 0=Background left, 1=background right, 2=grid,
3=grid text, 4=line base, 5=line offset. The color is specified with
<red>,<green>,<blue>.
To activate the new color setting for the current instance, the ‘rg c’
command is used.

Example : The following commands set the backgrounds to a light purple and a grey :
‘aw GColor0 191,127,127’
‘aw GColor1 127,127,127’
The color identifying an URLs data is read from attributes
‘Gcolor<URLId+10>; if such an attribute entry is not defined, the color is
computed by ‘GColor4’ + <URLId> * ‘GColor5’.

The named parameter ‘group’ is used to specify a selection of URLs instead
of using all URLs of the specified primary chain.
The syntax is : group={ [<chain>/]url; }
If a url of -1 is specified the average of all urls is computed.

Example : The following commands set the backgrounds to a light purple and a grey :
‘rg 1 0 1 group=0;1;2;1/6;’ Yesterday: Urls 0,1 and 2 of chain 0, and url 6 of
chain 1.
‘rg 1 0 1 group=-1;’ The average of chain 0 of yesterday.
‘rg 1 0 1 group=-1;0;1/-1;’ Yesterday: Average and url 0 of chains 0 and
average of chain 1.

‘rl’ <days-back> <max-count> <chain>
 List reporting entries of the last <days-back> days with max <max-count>

entries of chain <chain>.

 SPECTO manuals Commands in detail

SPECTO - 181 - NLS

‘rm’ <months-back> <chain> <type> [<limit>]

gives a graphical summary of a complete month of measurement of a chain.
This report is only available in SVG (‘scalable vector graphics’) format. If
the browser is not enabled for SVG a download link for a (the Adobe) plug-
in is automatically shown.

Analyzing or check a web page or whole chain

‘pa’ <URL> <include-source> analyses the page in reference to frames, forms, scripts,

applets, links, fields and buttons. Also generates warning for unsupported
constructs. See chapter ‘Page analysis’ for details.

 If <include-source> is ‘true’ or ‘1’ the source of the result page is included
in the output.

‘pt’ <chain id> <url id> <include-source> check a page including all parameters and
contents.

 If <include-source> is ‘true’ or ‘1’ the source of the result page is included
in the output.

‘sco’ <chain id> run once a complete chain of URLs and preserve additional information
(for debugging purposes).

‘pc’ display the result of the least chain ‘run once’.

Attributes

Overall configuration of SPECTO is accomplished using attributes which are stored in the
database. Attribute names are case insensitive but are stored bewaring case to allow for
better formatting. The attributes are maintained using the following commands :

Available commands :
 ‘aw’ <name> <value> [<client>] adds/replaces an attribute
‘ar’ <name> [<client>] reads an attribute value
‘al’ [<client>] list all attributes

Variables

During a chain execution local and global variables are used. Global variables must be
preceded with an underscore ‘_’.

Available commands for global variables :
 ‘vw’ <name> <value> adds/replaces a global variable
‘vr’ <name> reads a global variable
‘vd’ <name> deletes a global variable
‘vl’ list all global variables

Commands in detail SPECTO manual

SPECTO - 182 - NLS

User defined command

Any parameterized command can be assigned a name and will be displayed as an entry in
the ‘user commands’ section of SPECTO.

Available commands :
‘ua’ <name> <command> adds a user specified command
‘ud’ <name> removes the user specified command
‘ul’ displays all user defined commands

User management

SPECTO contains two types of users :

 normal, to a specific client bound users, and the
 ‘master’ user.

Logon id and password of the master user are maintained in the attributes ‘MasterUser’ and
‘MasterPassword’. The master user is not bound to a specific client, he can be attached to
any client using the ‘sm’ command. The client which is initially attached to the master is
specified in the attribute ‘MasterClient’.

Available commands :
 ‘lc’ list all clients.
‘sl’ list current user sessions.
‘sm’ <client-id> set master’s client.
‘pw’ <passw.> <passw.> set the logon password (new password must be supplied

twice).

Notifications

Based on the status reported by the individual chains during processing, SPECTO
maintains high/low watermark controlled counters of errors. Whenever the upper level is
reached notifications are generated and remain in processing until the low watermark is
reached.

Available commands (‘no ?’ for online help) :
‘no s’ list all error counters.
‘no l’ list all active notifications.
‘no a <chain> <err_type> add a notification
‘no d <chain> remove all notifications of a chain

Import / Export

The configuration of a complete client can be exported and imported to/from files
formatted in XML.

Available commands :

 SPECTO manuals Commands in detail

SPECTO - 183 - NLS

‘xc <filename>’ Exports the current client into file <filename>. The file is created
in directory above the SPECTO install directory (e.g. if SPECTO is
installed in ‘../projects/specto/’ the file is created in ‘../projects/’.

‘xci <filename> <clientNameInFile>’
 Imports the specified file into the current client. <clientNameInFile> must

match the client name specified in the import file (xml tag <clientName>).
 Note: The existing content of the current client will be overwritten by this command; it is

advisable to export (command ‘xc’) the existing client before importing. Especially the
administrator should check if he is in the correct client (command ‘sm’) before importing.

‘xg <filename>’
 Exports the SPECTO global data into file <filename>

Other commands

 ‘cs’ reports the technical status of the system. Any erroneous state is flagged

accordingly. In general such a state will require a restart of SPECTO.

‘ll <daysback> <from> <to> <lines> <tag>’ displays the last entries written to

SPECTO’s log.

‘lb [<lines>] displays the last entries written to SPECTO’s log from a special buffer in

memory (->faster than ‘ll’).

‘ca’ cache statistics and management for SPECTO documents (scripts, text

areas, documentation).

 ‘ms’ <to> <subj.> <msg.> send a email message (test case)

web recorder I SPECTO manual

SPECTO - 184 - NLS

web recorder I

Overview

Web recorder I is not supported any longer, please refer to the SPECTO Interceptor.
The separate SPECTO web recorder is available to assist in recording sessions of user
interaction on the web. The results are stored in the SPECTO configuration XML format
and can be imported in any SPECTO chain.

The SPECTO web recorder is only available for the windows platform.

Usage

The SPECTP web recorder monitors an Microsoft Internet Explorer (rel. 5.0 or higher).
No special treatments are necessary.

Documentation

• There is a separate document for installation and usage of the SPECTO web recorder

 SPECTO manuals SPECTO ‘Interceptor’ web recorder

SPECTO - 185 - NLS

SPECTO ‘Interceptor’ web recorder

Overview

The separate SPECTO ‘Interceptor’ web recorder is a plug-in for common web browsers
and allows the recording of a session with a website, filter the recording and transfer them
into a SPECTO ‘chain’.
There is a separate documentation for installing and using the SPECTO ‘Interceptor’.

Usage

After installation the SPECTO Interceptor is accessible within the browser’s title frame by
its own icon:

During a web session the Interceptor may be turned on and off at will; also, it can be reset,
clearing the recordings up to now.
After the session is completed, the recorded URLs can be filtered (e.g. to remove CSS and
web fonts) and the remaining information, formatted in SPECTO’s chain configuration
XML format, exported into the clipboard.

Installation SPECTO manual

SPECTO - 186 - NLS

Installation

Your SPECTO system is shipped completely installed

You have to provide :

 An IP address and, if available, a DNS name
 A SMT server name or address

Configuration of the IP address :

Windows NT platform

Change to :

1. Windows NT control panel
2. Network
3. Protocol stack
4. TCP/IP protocol
5. Properties

Set the IP-address, IP-mask and gateway address according to your environment.

UNIX platforms

Set the IP-address, IP-mask and gateway address according to your environment.

Configuration of the Java keystore :

The Java keystore is (among others) used to provide a certificate for incoming SSL
connections to the SPECTO internal web server (see command ‘ws’). A keystore has to be
generated once; as an easy approach use in the operating systems shell the command (from
the java home directory) :

bin\keytool -genkey -keyalg "RSA" -keystore keystore -storepass 123456

The SPECTO customizing may have to adapted using the SPECTO command: cu cert

 SPECTO manuals Databases

SPECTO - 187 - NLS

Databases

Relational databases play two roles within SPECTO. They are used for persistent storage of
SPECTO configuration and reporting data, and they can be targets of (‘sql:’)-URLs. In
both cases access of the database is via JDBC drivers.

This chapter details configuration information for the different databases supported by the
SPECTO engine.

ORACLE

Overview

ORACLE is the market leader in relational databases. SPECTO supports all ORACLE
editions (including ‘personal edition’ and ‘Oracle lite’) and versions. Installation of an
ORACLE database is not described here; the supplied standard installation procedures
shall be used.

Executing SPECTO on ORACLE databases

Start the specto engine using the following command :

java –Xms<memory> -cp Specto\Specto.jar Specto.SpectoMain <CreateDB-
option> DBCon=<db_type> DBUser=<user> DBPassword=<password>
DBName="thin:@<server>:<port>:<database>"
COMSocket=<socket_to_servlet>

With <db_type> :

 5 : ORACLE on windows
 6 : ORACLE on UNIX
 7 : ORACLE lite on windows
 8 : ORACLE lite on UNIX

Example:

java -Xms4000000 -cp Specto\Specto.jar Specto.SpectoMain CreateDB
DBCon=5 DBUser="usr" DBPassword="pwd"
DBName="thin:@localhost:1521:orcl" COMSocket=5555

The ‘CreateDB’ Parameter is only required during the first execution on a newly created
database. It may (and should) be omitted on later executions.

Databases SPECTO manual

SPECTO - 188 - NLS

Microsoft SQL Server

Overview

SPECTO supports the commercial and the (free) MSDE release of SQL Server. MSDE
(Microsoft SQL Server 2000 Desktop Engine (MSDE 2000), Version A) is available as a
package named ‘<Country>_MSDE2000A.exe’ (e.g. ‘GER_MSDE2000A.exe’ for
German language) from Microsoft’s web site (search for MSDE in the download section).

Installation of MSDE

During installation of the server the administrative user ‘sa’ will be assigned a password
(‘specto’) and, besides ‘window authentication’ also ‘sql authentication’ will be enabled:

 Download the …_MSDE2000A.exe file
 Execute the file. Execution will self extract the installation files into a new (not the

program) directory. This directory may be deleted after the installation.
 Using a command window change into the above directory and execute the following

command : setup SAPWD=”specto” SECURITYMODE=SQL
 Configure network by ‘svrnetcn.exe’ in the ‘80\Tools\binn’ subdirectory of the

program directory of the installed MSDE; add protocol TCP/IP
 Start sql server by executing ‘sqlmangr.exe’ in the ‘80\Tools\binn’ subdirectory

of the program directory of the installed MSDE.

Database creation using ‘osql’

After installation the tool ‘osql.exe’ located in the ‘80\Tools\binn’ subdirectory of
the installed MSDE, or ‘Enterprise Server Manager’ of the commercial SQL
Server release can be used to create the SPECTO database and account.
Using ‘osql.exe’ any of the following commands has to be executed in a command
window by prefixing the command with ‘osql.exe –U sa –P specto –Q ’.

 Create the SPECTO database : ‘create database specto’
(enter: ‘osql.exe –U sa –P specto –Q “create database specto”

).

If the standard user (‘sa’) is not to be used, the following steps are required:
 Change to the new database : ‘use specto’
 Create an account : ‘sp_addlogin 'specto', 'sol', 'specto'’
 Grant access : ‘sp_grantdbaccess 'specto', 'specto'’
 Add to owner role : ‘sp_addrolemember 'db_owner', 'specto'’
 Add to ddl role : ‘sp_addrolemember 'db_ddladmin', 'specto'’

Executing SPECTO on SQL Server databases

Start the SPECTO engine (usually via script) using the following command :

java –Xms<memory> -cp Specto\Specto.jar Specto.SpectoMain <CreateDB-option>
DBCon=10 DBUser=<user> DBPassword=<password> DBName="//<server>:<port>;
SelectMethod=cursor;databasename=<database>" COMSocket=<socket_to_servlet>

Example:

java -Xms4000000 -cp Specto\Specto.jar Specto.SpectoMain CreateDB DBCon=10
DBUser="sa" DBPassword="specto"

 SPECTO manuals Databases

SPECTO - 189 - NLS

DBName="//localhost:1433;SelectMethod=cursor; databasename=specto"
COMSocket=5555

Sybase Advanced Server

Overview

Sybase Advanced Server is a widely distributed database engine which also has been the
root of Microsofts SQL server. Installation of a Sybase ASE database is not described here;
the supplied standard installation procedures shall be used.

Executing SPECTO on Advanced Server databases

Start the specto engine using the following command :

java –Xms<memory> -cp Specto\Specto.jar Specto.SpectoMain <CreateDB-
option> DBCon=13 DBUser=<user> DBPassword=<password>
DBName="//<server>:<port>/<database>" COMSocket=<socket_to_servlet>

Example:

java -Xms4000000 -cp Specto\Specto.jar Specto.SpectoMain CreateDB
DBCon=13 DBUser="usr" DBPassword="pwd"
DBName="//localhost:1527/specto" COMSocket=5555

The ‘CreateDB’ Parameter is only required during the first execution on a newly created
database. It may (and should) be omitted on later executions.

MySQL

Overview

MySQL is the best known open source database. SPECTO supports all MySQL releases in
URL (‘sql:’) checking. As its underlying database SPECTO requires MySQL in release 4
because of the support for transactions. Installation of a MySQL database is not described
here; the supplied standard installation procedures shall be used.

Executing SPECTO on cloudscape databases

Start the specto engine using the following command :

java –Xms<memory> -cp Specto\Specto.jar Specto.SpectoMain <CreateDB-
option> DBCon=15 DBUser=<user> DBPassword=<password>
DBName="//<server>:<port>/<database>" COMSocket=<socket_to_servlet>

Example:

Databases SPECTO manual

SPECTO - 190 - NLS

java -Xms4000000 -cp Specto\Specto.jar Specto.SpectoMain CreateDB
DBCon=15 DBUser="usr" DBPassword="pwd"
DBName="//localhost:1527/specto" COMSocket=5555

The ‘CreateDB’ Parameter is only required during the first execution on a newly created
database. It may (and should) be omitted on later executions.

SAP DB / MAX DB

Overview

-.

Executing SPECTO on cloudscape databases

Start the specto engine using the following command :

java –Xms<memory> -cp Specto\Specto.jar Specto.SpectoMain <CreateDB-
option> DBCon=<db_type> DBUser=<user> DBPassword=<password>
DBName="//<server>:<port>/<database>" COMSocket=<socket_to_servlet>

With <db_type> :

 11 : SAP DB on windows
 12 :SAP DB on UNIX

Example:

java -Xms4000000 -cp Specto\Specto.jar Specto.SpectoMain CreateDB
DBCon=12 DBUser="usr" DBPassword="pwd"
DBName="//localhost:1527/specto" COMSocket=5555

The ‘CreateDB’ Parameter is only required during the first execution on a newly created
database. It may (and should) be omitted on later executions.

Hypersonic

Overview

Hypersonic is a relational database implemented entirely in JAVA. If used as the underlying
SPECTO database there are some minor limitations concerning SPECTO’s automatic
upgrade of database tables.

Executing SPECTO on cloudscape databases

 SPECTO manuals Databases

SPECTO - 191 - NLS

Start the specto engine using the following command :

java –Xms<memory> -cp Specto\Specto.jar Specto.SpectoMain <CreateDB-
option> DBCon=17 DBUser=<user> DBPassword=<password>
DBName="//<server>:<port>/<database>" COMSocket=<socket_to_servlet>

Example:

java -Xms4000000 -cp Specto\Specto.jar Specto.SpectoMain CreateDB
DBCon=17 DBUser="usr" DBPassword="pwd"
DBName="//localhost:1527/specto" COMSocket=5555

The ‘CreateDB’ Parameter is only required during the first execution on a newly created
database. It may (and should) be omitted on later executions.

Databases SPECTO manual

SPECTO - 192 - NLS

Cloudscape

Overview

Cloudscape is a relational database implemented entirely in JAVA. Originally developed by
Informix, with the buy of Informix by IBM it moved to IBM and was recently (with release
10) made ‘open source’ by IBM and given to the Apache group for future maintenance and
development.

Database engine

The cloudscape database is delivered with an installation application. But the installation of
the pure database engine can also be accomplished manually by executing the following
steps :

1. Download the most recent cloudscape distribution from :
http://www-306.ibm.com/software/data/cloudscape/ (will be apache soon)

2. Unpack it into a temporary location (may be discarded later)
3. Create a new directory (which will hold the database(s))
4. Copy the library files ‚cs.jar’ and ‚csnet.jar’ into any directory (e.g. the one created in

the previous step, or the JDK/JRE lib directory)
5. Assure that the JDK/JRE ‘bin’ directory is in the systems execution path
6. Start the cloudscape server using the ‚java’ command with specifying the java class

path to the two library (.jar) files copied from the download and executing
‚com.ihost.cs.drda.NetworkServerControl start’ (see sample startup
script below).

Sample startup script (windows environment) :

rem startup for cloudscape database server
set CSLIBS=C:\Programme\IBM\Cloudscape_10.0\lib\
java -cp %CSLIBS%cs.jar;%CSLIBS%csnet.jar com.ihost.cs.drda.NetworkServerControl start

Note: If the database server shall also be available via the network (as started above it is
only available for clients on the same machine) the parameter (-h 0.0.0.0) has to be
appended to above start command.

Note: Above script, with ‘start’ replaced by ‘shutdown’ may be used to stop the cloudscape
server.

Enabling SPECTO for access of Cloudscape databases

Copy the java library files (from the download of the chapter before) ‘cs.jar’, csnet.jar’,
‘db2jcc.jar’ and ‘db2jcc_license_c.jar’ to the directory where the other SPECTO additional
libraries are located (usually the JRE’s lib/ext directory).

 SPECTO manuals Databases

SPECTO - 193 - NLS

Accessing of Cloudscape databases with SPECTO URLs

SPECTO provides the ‘sql:’ identifier to execute SQL statements on relational databases
(see chapter ‘sql (relational database) access’ for details).
The ‘sql:’ id for cloudscape servers is ‘19’; the complete ‘sql:’ format is :
sql:19|<servername>:<port>/<database>{options}

Example : sql:19|//localhost:1527/sample

Creating a cloudscape database for SPECTO

A cloudscape database is represented as a subdirectory below the cloudscape directory (the
directory where startup was executed).
Though SPECTO is able to initially create all its required tables and content during startup
(parameter ‘CreateDB’), the database itself has to be created before. Such an empty
cloudscape database (the subdirectory structure) can be requested from NLS, or created by
an (already running) SPECTO engine. For the later, the following steps are required :

1. The cloudscape database engine must be installed and running (see ‘Database
engine’)

2. Within SPECTO create a new chain with one URL of the format :
sql:19|//localhost:1527/specto;create=true (‘specto’ is the name of
the new database, this may be changed). Also supply parameters for username,
password and an SQL command to be executed on the newly created database as
shown in the screen dump below :

3. Execute the chain once (using ‘one run’). The ‘source’ should show a listing similar
to :

TABLEID TABLENAME TABLETYPE SCHEMAID LOCKGRANULARITY
80000010-00d0-fd77-3ed8-000a0a0b1900 SYSCONGLOMERATES S 8000000d-00d0-fd77-3ed8-000a0a0b1900 R
80000018-00d0-fd77-3ed8-000a0a0b1900 SYSTABLES S 8000000d-00d0-fd77-3ed8-000a0a0b1900 R
8000001e-00d0-fd77-3ed8-000a0a0b1900 SYSCOLUMNS S 8000000d-00d0-fd77-3ed8-000a0a0b1900 R
80000022-00d0-fd77-3ed8-000a0a0b1900 SYSSCHEMAS S 8000000d-00d0-fd77-3ed8-000a0a0b1900 R
8000002f-00d0-fd77-3ed8-000a0a0b1900 SYSCONSTRAINTS S 8000000d-00d0-fd77-3ed8-000a0a0b1900 R
…

4. Inspect the cloudscape base directory to ensure that there has been a new

subdirectory ‘specto’ created.

Databases SPECTO manual

SPECTO - 194 - NLS

Executing SPECTO on cloudscape databases

Start the specto engine using the following command :

java –Xms<memory> -cp Specto\Specto.jar Specto.SpectoMain <CreateDB-
option> DBCon=19 DBUser=<user> DBPassword=<password>
DBName="//<server>:<port>/<database>" COMSocket=<socket_to_servlet>

Example:

java -Xms4000000 -cp Specto\Specto.jar Specto.SpectoMain CreateDB
DBCon=19 DBUser="usr" DBPassword="pwd"
DBName="//localhost:1527/specto" COMSocket=5555

The ‘CreateDB’ Parameter is only required during the first execution on a newly created
database. It may (and should) be omitted on later executions.

 SPECTO manuals Running SPECTO

SPECTO - 195 - NLS

Running SPECTO

Running the database

Start/Stop procedures of the database used by the SPECTO engine depends on the type of
the database used. Please see the vendors manual for instructions. SPECTO related
database specific issues are explained in the preceding chapter.

Starting the external (‘tomcat’) web server / servlet container

The external ‘tomcat’ web server is started by double clicking the 'Start WWW Server' icon
on the desktop. A command window will appear. After some seconds; another window
with the lines 'JSDK WebServer...endpoint created: :80)' will appear; the first window will
disappear.
The 'JSDK WebServer’ window will stay; it may be iconized.

Starting SPECTO

SPECTO is started by double clicking the 'SPECTO' icon on the desktop. A command
window will appear and SPECTO will be executed in that window. If another SPECTO
instance is already loaded, the new SPECTO will go into Backup mode for the running
SPECTO.

If started manually it may be useful to increase the process priority of the SPECTO engine
(using task manager on Windows 32 or the command shell on UNIX).

Running SPECTO SPECTO manual

SPECTO - 196 - NLS

Startup parameters

The SPECTO engine may be parameterized using startup parameters on the command
line. Usually this is done in a startup script (‘init.cmd’ in a Windows, ‘init’ in an UNIX
environment, the startup script is located in the SPECTO home directory).

The command line to start SPECTO consists of :

• the java virtual machine name
• parameters to the java virtual machine (may be empty)
• the SPECTO main class file name
• the startup parameters (may be empty)

Available startup parameters concerning database and front end connection (the
parameters are case sensitive, they have to be applied exactly as shown in the table) :

Parameter Description
DBCon Connection type to database : 0 = JDBCviaODBC, 1/2 = JDBC-

SOLID (Windows/UNIX), 3/4 = JDBC-JDataStore, 5/6 = JDBC-
ORACLE, 7/8 = JDBC-ORACLE Lite 10 = MS SQL Server (MS
JDBC driver)

DBName Database name (ODBC name if DBCon is 0)
DBUser UserId to connect to the database
DBPassword Password for above UserId
ComSocket TCP/IP port number on which the SPECTO engine will listen to

commands. Default is 5555; if the specified port is used the next higher
ports (up to 20) are tried.

If startup parameters are not supplied the following defaults are assumed by the SPECTO
instance :

Parameter Description
DBCon 0
DBName
DBUser specto

DBPassword sol
ComSocket 5555

Example (SPECTO on MS SQL server) :

java -Xms4000000 Specto.SpectoMain DBCon=10 DBUser="spectod" DBPassword="sol"
DBName="//localhost:1433;SelectMethod=cursor;databasename=spectod" COMSocket=5555

The current configuration of a SPECTO engine can be read by using the ‘cs’ command.

 SPECTO manuals Running SPECTO

SPECTO - 197 - NLS

The SPECTO engine’s operations mode can be tailored using additional optional
command line parameters at startup (the parameters are also case sensitive, they have to be
applied exactly as shown in the table) :

Parameter Description
CreateDB In the underlying database create all tables needed by the SPECTO

engine. Existing tables are not re-created, existing data is not modified.
This parameter is usually used to create SPECTO tables at first invocation
of the engine; it should but need not be removed after successful creation
of the tables. The built-in SPECTO mechanism for updating of table
structures during release changes is not affected by this parameter.
See database specific issues in the preceding chapter.

BaseDir Initial setting of the base directory used for data exchange with the web
server. If applied also the ‘WebBaseDir’ and ‘TempBaseDir’ values
are derived from this value. All xxxDir values are saved into the equivalent
attributes (overwriting existing values).

Options A list of character size entries determining minor SPECTO issues.
Currently implemented :
‘c’ : disable console input
‘h’ : AWT ‘headless’ mode (Linux without X11)

Continue Activates ‘continue’ mode. During ‘continue’ mode the new SPECTO
engine is starting up in silent mode. After start up the run image (threads,
notifications, sessions, global data) stored by the last SPECTO engine run
is read (from cluster entry ‘specto.runimage’ in client 0) and
restored.
‘continue’ mode is automatically exited (switching to normal SPECTO
operation) when the run image is fully operational.

ClearContinue Clears a pending ‘continue’ mode (a ‘continue’ mode request which was
set at exit of the last engine run).

Mirror Activates ‘mirror’ mode. During ‘mirror’ mode a second SPECTO engine
instance synchronizes with an already running SPECTO engine instance.
The mirroring node works on the same database and starts the same
threads as the mirrored node but does not write log or result entries into
the database.
‘mirror’ mode is automatically exited (switching to normal SPECTO
operation) when the mirrored engine instance is going down; it may be
turned off manually using command ‘mirror off’.

Maintenance Activates ‘maintenance’ mode. During ‘maintenance’ mode a SPECTO
engine instance operates on the same database as another already running
SPECTO instance. During ‘maintenance’ mode no log or result entries are
written to the database. Also no Reporting cache pre-fetching, no auto
start scripts, no startup threads and no batch processes are activated.

NoNotif Disables activation of notifications. If NoNotif is specified no
notification status nor notifications are computed during the amount of
seconds specified. Notification processing can be manually reactivated
using command ‘no activate true’.

NoStartup Disables starting of defined startup threads.
WebServer forces generation of an active internal web server instance on port 80.

This is usually used during initial start of a new SPECTO engine without
an external (‘tomcat’) web server. This parameter also creates a matching
entry in the attributes list so that the parameter is not needed for
consecutive starts of the SPECTO engine.

Running SPECTO SPECTO manual

SPECTO - 198 - NLS

Stopping/restarting SPECTO

‘SPECTO’ is stopped by issuing the ‘quit true’ or ‘restart true’ commands.
The SPECTO engine notifies about the success of stopping the individual services. Note
that waiting for threads to terminate and open changes to be written to the database may
take some time.

If the ‘quit’ or ‘restart’ command is issued with the optional parameter ‘nice’ then
the engine waits for all chain threads to finish the current chain measurement.

If the ‘quit’ or ‘restart’ command is issued with the optional parameter ‘silent’
then the SPECTO shutdown messages are not written into the database log table.

If the ‘restart’ command is issued with the optional parameter ‘continue’ then the
restart of the SPECTO engine will be in ‘continue’ mode (see chapter Startup parameters).
This also enforces ‘silent’ mode.
Note: The startup parameter ‘ClearContinue’ may be used to override an accidentally
set ‘continue’ mode.

 SPECTO manuals Running SPECTO

SPECTO - 199 - NLS

High availability operation (mode I : ‘shared hardware’)

In this availability scenario two ‘SPECTO’ instances are running on the same hardware and
are using the same (remote) database and servlet (‘tomcat’) engine. The instances are
named ‘active’ and ‘passive’. The active instance is operated identically to a standard
SPECTO instance; the passive instance is started in ‘mirror’ mode (see above parameter
description).

Before takeover :

 Verify that the two instances are in sync (if in doubt save the runimage on the
active instance and then restart the passive instance)

 verify that the results are prefetched

At takeover :

 shut down the active instance

The previous active instance may now be stopped.

High availability operation (mode II : ‘shared database’)

In a high availability scenario two ‘SPECTO’ instances are running on different hardware
and are using the same (remote) database. The instances are named ‘active’ and ‘passive’.
The active instance is operated identically to a standard SPECTO instance; the passive
instance is started in ‘mirror’ mode (see above parameter description).

Before takeover :

 Verify that the two instances are in sync (if in doubt save the runimage on the
active instance and then restart the passive instance)

 verify that the results are prefetched

At takeover :

 shut down the active instance

The previous active instance may now be stopped.

High availability operation (mode III : ‘unshared’)

In this high availability scenario two ‘SPECTO’ instances are running on different
hardware and databases. The instances are named ‘active’ and ‘passive’. The active instance
is operated identically to a standard SPECTO instance; the passive instance is started in
‘mirror’ mode (see above parameter description).

Running SPECTO SPECTO manual

SPECTO - 200 - NLS

Release upgrade in a HA environment

In a high availability environment a ‘SPECTO’ downtime is not tolerable. Therefore release
upgrades have to be performed using two instances, named ‘C’ (current) and ‘I’ (intermediate).

Note : The intermediate instance is assumed in a different directory or on a different
machine to prevent problems with locked files of the code base.

Preparation :
Check for running ‘maintenance’ and ‘backup’ instances and shut them down (may block
access to the new code base otherwise).

The recommended manual procedure is :

I: (Is assumed running) Prepare for the newest code release : ‘engine f’
C: Save current internal status : ‘runimage s’
I: Restart with new code base in ‘continue’ and ‘mirror’ mode : ‘restart true

continue mirror’.
Note: Caches are not used chains are running 30 s shifted

I: Wait until running stable / Check functionality of new code base
C: Cleanly stop all running chains : ‘kta nice’
I: Terminate mirror mode (measurements will go into the database, notifications will

execute) : ‘mirror off’
I: Save current image : ‘runimage s’
C: Prepare for new code base : ‘engine f’
C: Restart in ‘continue’ and ‘mirror’ mode : ‘restart true continue mirror’

Note: Caches are filled, chains are running unshifted
C: Wait until running stable
I: Cleanly terminate intermediate instance : ‘quit true nice’
C: Terminate mirror mode : ‘mirror off’

The optional automatic procedure is (beta yet) :

I: Check feasibility : ‘engine upgrade check’
 Note : Verifies that the current node is reachable
C: Enable external controlled upgrade: ‘engine upgrade allow’
I: Upgrade current instance : ‘engine upgrade true’

Post operation :
Restart ‘maintenance’ and ‘backup’ instances

 SPECTO manuals Running SPECTO

SPECTO - 201 - NLS

Stopping the web server

Double click the 'Stop WWW Server' icon on the desktop. A command window will
appear. After same seconds the existing 'JSDK WebServer' window will show a termination
message and disappear; then the initial command window will disappear. If the above
procedure does not work, it is necessary to select the 'JSDK WebServer' window and
(multiple times) press control-C.

Stopping the database

See the database vendors manual for instructions on how to safely shut down the database.
There are no SPECTO specific issues with that.

Running SPECTO SPECTO manual

SPECTO - 202 - NLS

Advanced topics

Running multiple SPECTO instances on one machine

Multiple instances of a SPECTO engine can be run on one computer system without
disturbing each other. This may be helpful if a development system is required or if
(because a native threaded java vm is not available) load distribution is required on a
multiple cpu system.

Database :
For every SPECTO instance a separate database engine is required. Sample configuration
files are available upon request.

SPECTO engine :
Every SPECTO instance must be connected to its own database instance and must listen
to a unique port.
This configuration is done using startup parameters in the startup script (‘init.cmd’ or ‘init’
in the SPECTO home directory) :
Example for two SPECTO instances using JDBC/ODBC interfaces and listening on ports
5555 (the default) and 5554 :

java Specto.SpectoMain DBName="ShMem Solid" COMSocket=5555
java Specto.SpectoMain DBName="Solid2 via net" COMSocket=5554

Web server :
Only one ‘SPECTO web server’ is required. Login on to a SPECTO other than the default
is accomplished by specifying the connection socket after (separated by a space) the service
name.

Example : ‘specto 5554’ would connect to a SPECTO

instance listening on port 5554.

Duplicating a SPECTO instance into foreign databases

With the ‘be <filename>’ command, the content of a SPECTO database can be exported
as SQL ‘INSERT’ statements, which can be used to import the data in any other relation
database.
‘be’ does not export the reporting, archive and logging data. If this is required, add an ‘r’, ‘a’
or ‘l’ character to the be command (‘beral.’ would export all data).

 SPECTO manuals Attributes summary

SPECTO - 203 - NLS

Attributes summary

SPECTO is configured by attributes. Attributes are permanent (stored in the database) and
can be set using the ‘aw <name> <value> [<client>]’ command or with the ‘attribute editor’
(commands ‘ae’ or ‘ae <prefix>’).

The SPECTO standard attributes (list below) are usually set during customizing. Therefore
it is preferred to use the customizing modules from the menu (section ‘customizing’).

Some attributes require the SPECTO engine to be restarted.

It is permitted to add own attributes. Attributes can also be read from the SPECTO script
languages (for security reason a ‘_’ will automatically be prefixed to the attribute name).

Name description examples, comments
ActionOnError Name of an operating system

command to be executed whenever
an URL runs into an error

tracert >tracert.log

AmAlive If ‘true’ send an ‘am alive’ signal. false
AmAliveAddress Address to which to send the ‘am

alive’ signal
specto@NLS.de

AmAliveType Type of transport of ‘am alive’
message; like notification type, e.g.
‘e’ is email.

e

BaseDir SPECTO installation base directory
CCMSActivation See chapter ‘SAP R/3 CCMS’. false
CCMSClient See chapter ‘SAP R/3 CCMS’. 000
CCMSHost See chapter ‘SAP R/3 CCMS’. Sapr3.de
CCMSSystem See chapter ‘SAP R/3 CCMS’. 59
CERTKeyFile See section ‘authentication by

certificates’.

CERTKeyStore See section ‘authentication by
certificates’.

CERTKeyStorePwd See section ‘authentication by
certificates’.

specto

CERTKeyTool See section ‘authentication by
certificates’.

CSVSeparator The character used as separator
during generation of CSV (‘comma
separated values’) files.

,

ConsoleFormat Format of messages on the
SPECTO console (0=only message,
1 = time + message, 2 = date +
time + message)

2

ConnectTimeout Maximum wait time for opening of
connections. In milliseconds

50000

DefaultScriptEngine SpectoScript ‘ss’, JavaScript (‘js’). js
DefaultUpperLimit Default high value (in milli-seconds) 5000

Attributes summary SPECTO manual

SPECTO - 204 - NLS

for graphical represen-tation of
results

DoLog Enables writing of log messages into
the permanent log

true (default)

ExpandActiveBranch Preset of the ‘expandActive-Branch’
option in the navigation screen

false (default)

ExportBaseFilename Prefix of the filename used for
automatic exports.

AutoExport

ExportHour Begin hour of export. 0
FAXPassword Password for FAX service provider
FAXProvider Email address of provider fax@NLS.de
FAXUsername Username for FAX service provider
FirstCommand SPECTO command to be executed

after logon.
el

FormMethod HTTP method used to submit
HTML forms

POST

Gcolor0 – 5 Permanent storage for coloring of
graphics (see ‘Reporting’).
0/1 = backgrounds
2 = arrows, 3 = text,
4 = line base, 5 = line delta.
Format = red,green,blue

128,64,0

GUIColor0 – 9 Permanent storage for coloring of
the GUI (see command ‘co’).
Format is #rrggbb (hex)

#804000

GUILinkButtons Use of HTML buttons instead of
links.

false

GUITextRows Number of rows in the document
window

18

GUIType 1 = single, 2=frames,
3=frames+javascript

1

HostsBaseDir Directory of the ‘hosts’ file C:\windows\system32\driv
ers\etc\

LastReceivedMessage Used internally to remember the
timestamp of the last received
SpectoNet message

LimitWriteToFirst If multiple instances of a chain are
started, if ‘true’ then only the first
one writes entries into the result
tables.

true

LogLineSize Maximum number of characters in a
log line

79

MailDebug Enables debug messages to the
console within the mail module

false (default)

MailFrom Sending account for email
Messages

MailHost SMTP mailhost used for sending
and receiving of messages

mail.NLS.de

MailHostSOAP Address of system providing SOAP http://www.NLS.de/Specto

 SPECTO manuals Attributes summary

SPECTO - 205 - NLS

based email service. /SpectoHome
MailLastUpdate Used internally to remember the

timestamp of the last SpectoNet
message poll

MailMbox Name of the mailbox INBOX (default)
MailPassword Password for authorization against

the mail server
specto

MailPopBeforeSmtp If ‘true’ send any SMTP action is
prefixed with a POP read (for
authentification)..

false

MailProtocol Mail protocol used for reading of
mail messages

pop3 (default)

MailReadPeriod Period of fetching new mail from
the mail server (in seconds)

300

MailReceiveEnabled Enables receiving of SMTP
messages

false (default)

MailReceiveHost SMTP mailhost for receiving of
messages (if different from
‘MailHost’

MailReceivePassword Password for the mail inbox (if
different from ‘MailPassword’)

MailReceiveUser Username for the mail inbox (if
different from ‘MailUser’)

MailViaSOAP If ‘true’ outgoing email is forwarded
via a SOAP service instead of using
a SMTP access.

false

MailBackupViaSOAP If ‘true’ outgoing email is forwarded
via a SOAP service in case the
primary SMTP email service fails.

false

MailUser Username for authorization against
the mail server

spectomaster@NLS.de

MasterClient Default client for the administrative
account.

1

MasterPassword Password of the administrative
account

Specto

MasterUser Name of the administrative account Specto
MCConfiguration Configuration of the master

console. Should not be altered
manually, use ‘mcc’ command.

tsnpgnpunhlnnnn

MonitorDisable Specifies if the monitor functionality
for checking running chains is
disabled

False (default)

NetDebug
NotificationAddError If any URL failure within a chain

will increase the error counter
(‘true’) or only the first (‘false’).

Default = ‘true’

NotificationSubject Text used as subject for
notifications.

Default = "Specto
Notification"

PageSizeChain Number of URLs shown on one 99 (default)

Attributes summary SPECTO manual

SPECTO - 206 - NLS

page of the chain configuration
screen.

PageSizeClient Number of chains shown on one
page within the client configuration
screen.

99 (default)

PingEnabled If ‘true’ ‘ping’ access is enabled.
Note that ping services require an
external library).

false

PlattformsToDeploy Targets for deployment. Targets are
separated by ‘;’; each specified as
‘name:port:password’. (password
section is optional).
If ‘PlattformsToDeploy’ is specified
then an entry ‘deploy’ is available as
an action in the client configuration
screen.

ProdSpecto.NLS.de:5555;
196.132.100.47:5554:pwd

ProxyDefault Configuration of the proxy
mechanism (see command ‘wp’)

ProxyExcludedHosts Hosts which shall not be accessed
using the proxy. ‘*’ may be used as
wildcard; several entries are
separated with ‘|’.

Example :
 *.NLS.de|localhost

ProxyHost Name of the proxy host Proxy.NLS.de
ProxyPort Port number of HHTP access for

proxy
8080

AmAlive If ‘true’ send an ‘am alive’ signal. false
ProxySHost Name of the proxy host for HTTP-

S connections
ProxyS.NLS.de

ProxySPort Port number for HTTP-S access of
proxy

8081

SocksExcludedHosts See ‘ProxyExcludedHosts’.
SocksHost Name of the proxy host for socks

connections
socks.NLS.de

SocksPort Port number for socks access of
proxy

1080

R3CommandListener If ‘true’ the R/3 RFC receiver
process is enabled.

false

R3Interfaces Specifies enabling of the
R2Interfaces for incoming
messages.

false (default)

R3Register Command line parameters to
register against an R/3 application
server

-g 192.168.73.230 -a
execcommand -x sapgw17

RampIndex Default ramp index (see ‘Ramp
mode’)

10

ReadOnly Specifies if users other than the
administrator are only allowed read
access

false (default)

ReadTimeout Maximum wait time for reading 25000

 SPECTO manuals Attributes summary

SPECTO - 207 - NLS

from connections. In milliseconds.
RemoteExec Password for incoming commands.

If the passwords do not match the
command is rejected.

Reporting.UseSVG Enables SVG (‘scalable vector
graphics’) for graphical reporting.

True / false (default)

Running The name of the instance using a
SPECTO database. Used internally
as a lock for the database

SMSPassword Password for SMS service provider
SMSUsername Username for SMS service provider
SNIsMaster Specifies if this node acts as a

SpectoNet master.
false (default)

SNMasterNode Address of the SpectoNet master
node

SNSyncPeriod Period (in seconds) for polling the
message handler (e.g. mail host)

600 (default)

SNThisNetwork SpectoNet name of this network. SpectoDemoNet
SNThisNode SpectoNet name of this instance. WestCoast12
SNThisNodeId The unique numeric id of this node 1
SoTimeout If ‘true’ send an ‘am alive’ signal. false
SoapInClient See chapter ‘SOAP server’ 0
SoapInDebug See chapter ‘SOAP server’ false
SoapInEnabled See chapter ‘SOAP server’ false
SoapInScript See chapter ‘SOAP server’ Soap_in
TakeOverAdressee If a failed SPECTO instanced is

taken over by a standby instance, a
message can be send to that address.
(No message will be send if empty).

TakeOverType The type of message to be generated
on take over (email, fax, sms).

e, f, s.

TempBaseDir Directory in the file system to share
generated graphic files between
SPECTO engine and web server.

C:\tomcat4.0\
webapps\ROOT\ Specto\

ThreadNamePrefix Prefix of the name of the chain
processes.

proc

TempBaseDir The directory for temporary files
UDDITransport The java library used for transport

of UDDI messages.
org.uddi4j.transport.Apache
SOAPTransport

UsersEnable If ‘true’ activates enhanced user
management.

false

Verbosity Verbosity level of console messages
(0=no messages).

2

XMLInClient See chapter ‘XML server’ 0
XMLInDebug See chapter ‘XML server’ false
XMLInEnabled See chapter ‘XML server’ false
XMLInScript See chapter ‘XML server’ xml_in

Troubleshooting SPECTO manual

SPECTO - 208 - NLS

Troubleshooting

Problems connecting to SPECTO

The login page does not appear

The web server is not started.
The web server (servlet) process is not configured for port 80.
The web server (servlet) could not connect to port 80 because this port is already in use or
the process is not allowed to (‘Administrator’ / ‘root’ authorization required).
 Check the web server’s startup log. Try using the local web browser with URL
‘http://localhost’.

No responses are returned from SPECTO

SPECTO is not started.
SPECTO could not connect to socket port 5555 (maybe has connected to another port
because the initial port (5555 if not configured otherwise) is already in use.
 check the startup log.
Your SPECTO instance is not defined for the default port (5555).
 at the logon panel you have to supply the port number after the ‘specto’ service name,
separated by a blank (e.g. ‘specto 5556’).

Problems during SPECTO execution

During start of SPECTO a class library cannot be found

The ‘CLASSPATH’ variable is not set correctly within the ‘init’ (‘init.cmd’, ‘init.sh’) script.

During start of SPECTO a huge number of Java JDBC exceptions
occur

The database is not started, the SPECTO data is not installed on the database (maybe the
data was not installed with the user account used for SPECTO), or the ODBC/JDBC
driver is not installed.
SPECTO is not supplied with the correct startup parameters (DB-Type, -user etc.).

During a notification no emails are sent

The ‘MailHost’, ‘MailUser’ or ‘MailPassword’ variables are not properly set. Use the ‘al’
command to verify the configuration. You may use the mail send (‘sn <address>
<subject> <content>’) command to verify proper configuration.

 SPECTO manuals Troubleshooting

SPECTO - 209 - NLS

Incorrect/strange behavior

The cursor is not positioned correctly in SPECTO forms

The web browser used to access the SPECTO service does not support or has turned of
Java script.

The display does not fit

SPECTO uses the browser’s default font configuration; may be the font size has to be
decreased/increased.

Web pages from SPECTO are only partial displayed, an HTTP 4xx
error occurs or other ‘strange’ messages

Verify (message at startup) that the ‘Tomcat 4.x’ web server is in use, earlier versions
(especially the 2.1) had problems with large HTML forms.
Also verify that the attribut ‘FormMethod’ is set to ‘POST’.

Known problems SPECTO manual

SPECTO - 210 - NLS

Known problems

timeout

If computation of a command takes very long (e.g. graphical reports with multiple pages) it
may occur that the web server times out before Specto delivers the result. In this case the
return screen consists only of a new command line field.
Try to submit a command which requires less computational time or submit the command
during a phase of less load on SPECTO.

database inconsistency

It may happen that the SPECTO persistence layer cannot write a changed configuration
because of key violations. In such a case SPECTO is still functional but the last and any
further changes are not reflected into permanent storage.
SPECTO indicates this by a red error line on any screen submitted to a user. You may try
to undo the change which created the error, or you may reload the client in question using
the ‘dg’ command.

application dump

If a program error occurs in SPECTO no answer will be returned to the web server and
this will time out. In this case a dump occurs in the SPECTO console window. You are
encouraged to make a screen shot of the dump and send it to ‘specto@NLS.de’.

 SPECTO manuals Tutorial

SPECTO - 211 - NLS

Tutorial

Overview

This tutorial consists of several sections, each of them showing a certain aspect of efficient
SPECTO usage. The necessary web-pages to execute the examples are content of any
SPECTO installation; also the instances on the NLS SPECTO demonstration instance
(‘www.NLS.de’) can be used. Some examples access dynamic web-pages based on ‘servlets’,
in this case the URL is case sensitive and must be entered exactly as shown. (you may copy
the URLs from the PDF-version of this document).

The tutorials assumes that you are logged on to SPECTO and have selected the correct
client (which is the case normally). To get familiar with their behavior it is recommended to
play a little bit with the tutorials using a web browser before applying them to a SPECTO
definition.

The screen print below shows the list of chains as they are delivered in the SPECTO
demonstration client :

(You may use this client as a reference but you are encouraged to configure the tutorials by
yourself).

The tutorials are enhanced continuously, please refer to the support application for the
latest available tutorials.

Tutorial SPECTO manual

SPECTO - 212 - NLS

A simple homepage monitor (tutorial 0)

In our first step we will set up a simple SPECTO system which just monitors a single web
site.

Creating a new client

After logging on to SPECTO you are automatically attached to your client. You can
implement the tutorials within this client or create a new client for the tutorials. (see the
‘create client’ section in the commands’ chapter for details).

Creating a new chain

Use the ‘el’ command to display the current list of chains in your client. In the ‘action’
listbox of one of the chains select the ‘add’ entry and then select the ‘Execute’ button or
press enter.
The new chain should appear in the list with a ‘* new chain *’ title, which should be
replaced with something more meaningful (like ‘tutorial 0’).
(If you have created a new client there is already a new chain created; which you can use).

Creating new URL, notification and off-time.

Clicking on the newly created chain link to change to the chain configuration screen into
which one URL is already defined (‘* new URL *’). Replace this URL with the NLS
homepage (‘www.NLS.de’), and tune the ‘timeout’ and ‘too long’ parameters to your needs.

Checking, testing, starting and stopping the chain.

Select the ‘analyse’ entry from the list box in the ‘action’ column; then press enter.
SPECTO will read the defined web page once and displays some analytical information
about the page.
Then select the ‘test’ entry to check the web page once; also press enter. SPECTO will test
the page once and will display result information.

If the above results are okay, you may start the continuous page monitoring. To do that, go
back to the chain definition page (using the ‘el’ command or the ‘Client =…’ link below the
title); there select the ‘start’ entry of the list box and press enter. Note that the status
column of the selected line should read ‘running (one)’. Let the monitoring running for a
while (some minutes at least) before going on to the next step. You may, but need not, stop
the monitoring using the ‘stop’ entry.

Checking the results.

Use the ‘ro 0’ command to display the actual number of measurements for all chains of the
current client today.

To display a graphical representation use the ‘rg 0 0 1’ command (assuming chain 0); for a
textual view, use the ‘rh 0 0 10’ command. Using ‘rg’/’rh’ with the -? parameter gives a
short explanation of the command.

 SPECTO manuals Tutorial

SPECTO - 213 - NLS

Adding ‘notifications’ and ‘off times’.

Add a notification entry by clicking on the ‘add notification’ link and set the first field
(‘notification’) to a valid email address (yours) and select ‘email’ in the ‘type’ field. The
notification repeat period (30 minutes) and warning level (6) can also be adjusted.
Then add a ‘off time’ (a period of time in which no monitoring should happen) and adjust
it to daily, from 21 pm to 3 am. (Assuming you won’t do the tutorial at that time…).

The chain configuration should now look like the screen print below :

Note: Whenever the configuration of a chain is changed, the changes are NOT inherited to

already running processes. To achieve this, the processes have to be stopped and
restarted.

To test the notification adjust the timeout period to a low level (5 ms, to simulate a too
slow response) and restart the process.
After a certain time (as soon as the error trigger level is reached) you will get an email
notification. You may use the ‘no s’ command to monitor the error level rising and the ‘no
l’ command to see the list of active notifications.

You may also experiment with an invalid URL instead of the short timeout value.

Monitoring a sequence of pages (tutorials 1 to 3)

In this session, monitoring will be set up for a complete sequence of web pages. You will
learn about sequences of chains, the computation of page values, and the ‘session’ concept.
This tutorial is based on the preceding tutorial, you are recommended to process this
before starting here. This tutorial, like the following ones are based on a set of similar web
applications (‘servlets’); the screen pictured below gives an impression of their look :

Tutorial SPECTO manual

SPECTO - 214 - NLS

The source code of the tutorial applications is available on request.

Creating a new chain (checking page content)

As in the preceding example, create a new chain (‘Tutorial 1’) and, within this chain, create
a new URLs and name it ‘http://localhost/servlet/SpectoTutorial1’.
Change to the URL configuration screen (using the ‘Page 0’ link) and specify a parameter
‘action’ with a value of ‘5’; and three content entries; two values ‘counter’ and ‘between’
and one logical ‘counter and between’ and connect them by specifying the parent of the
values as ‘2’ and the level of the logical entry with ‘1’.
The URL configuration screen should now look like :

Creating a new chain (sessions based on URL-included session
parameters)

As in the preceding example, create a new chain (‘Tutorial 2’) and, within this chain, create
a new URL and name it ‘http://localhost/servlet/SpectoTutorial2’. This tutorial adds
session management by usage of a session parameter in the URL. The session's parameter
name is 'session', its value comes from the application, is constant during the session and
will be read by SPECTO at its first appearance and then applied to every preceding page.
The only difference to the preceding tutorial is that you have to define the session
parameters name (here ‘session’) into the session field in the chain configuration screen.

 SPECTO manuals Tutorial

SPECTO - 215 - NLS

Start the chain processing with the ‘start’ action. You may verify the session processing by
applying part of the session recognition output as a content value.

Creating a new chain (session based on cookies)

SPECTO’s cookie handling is automatic, you do not have to specify anything. Note :
SPECTO is serious about the session concept; every time it starts with the first URL of a
chain, all cookies will be erased! You can mimic this behavior, by restarting the browser.
As in the preceding example, create a new chain (‘Tutorial 3’) and, within this chain, create
two new URLs and name both of them ‘http://localhost/servlet/SpectoTutorial3’.
For both URL define the usual parameter ‘counter’ and an appropriate value, also, for the
second URL specify a content variable ‘SpectoTutorialContent’.

Pages containing applets (tutorials 4 and 5)

This tutorial will show how to work with web applications using applets.
This tutorial is based on the preceding tutorials, you are recommended to process them
before beginning with this tutorial.

As in the preceding example, create a new chain (‘Tutorial 4’) and, within this chain, create
a new URLs and name it ‘‘http://localhost/servlet/SpectoTutorial4’.

Pages using secure communication (tutorials 6 and 7)

This tutorial will show how to work with web applications using secure communication
based on HTTP-S and/or SSL.
This tutorial is based on the preceding tutorials, you are recommended to process them
before beginning with this tutorial.

* to be done *

Monitoring a b2b site (tutorials 8 and 9)

This tutorial will guide you thru all the steps required to work with XML based ‘business-
to-business’ (‘b2b’) implementations.
This tutorial is based on the preceding tutorials, you are recommended to process them
before beginning with this tutorial.

* to be done *

Monitoring from different regions

This tutorial will guide you thru all the steps required to set up a distributed SPECTO
configuration.

Tutorial SPECTO manual

SPECTO - 216 - NLS

This tutorial is based on the preceding tutorials, you are recommended to process them
before beginning with this tutorial.

SPECTO instances can be joined to a SPECTOnet. Any change made to a SPECTO
configuration will be propagated to all members of the net within a short amount of time
(usually some minutes).

Defining a SPECTOnet configuration

* to be done *

Propagating a configuration change

* to be done *

Joining results

* to be done *

 SPECTO manuals INDEX

SPECTO - 217 - NLS

INDEX

‘am alive’ .. 203, 206, 207
‘set’ .. 41, 74
Am alive messages .. 166
Analysis... 47
Analyzing .. 181
applet .. 41
Applets ... 70

tutorial ... 215
Attributes .. 175, 181

summary ... 203
Attributes cache .. 165
Authentication ... 75
Auto export.. 166
B2B ... 142
B2B features .. 150
Background

execution .. 171
PDF generation ... 91

Batch
execution .. 170

BMEcat .. 143
Borland JDataStore ... 59
Business-to-business ... 142
Button ... 181
CCMS ... 156
Certificate ... 75
Chain

multiple instances .. 204
structure .. 14

Chains
limit to ... 162

Characters
special ... 45, 177

CLASSPATH.. 159, 208
Client

configuration .. 178
structure .. 14

cluster configuration ... 79
Cluster support .. 79
Command .. 177

other .. 183
script... 112, 114, 116
user defined .. 182

Commands
allow admin specific 162
limit to ... 162

Commerce One Inc .. 142
Commerce.net ... 142
configuration ... 78
Configuration .. 178

chain .. 28
client .. 178
master console ... 93
page ... 34
Specto Net ... 172

Connections
database .. 165

Console
client .. 94
desktop ... 95
master ... 93
portal ... 96

console plug-in 133, 134, 135, 136, 137, 138
Content ... 29
Content check ... 38
Cookie .. 29, 48

tutorial ... 215
Copying

chain .. 179
client .. 179
URL... 179

Create
client .. 178

Customizing ... 175
cXML.. 143
Database ... 13

inconsistency .. 210
starting .. 195
stopping .. 201

Database connections 165
Database management 165
Database recovery... 165
DDL ... 59
Debug

mail .. 204
Delayed Write .. 165
Desktop .. 95
directory ... 61

temporyry files ... 207
DML ... 59
DNS .. 186
Documents cache ... 165

INDEX SPECTO manual

SPECTO - 218 - NLS

download .. 180
DTD ... 142
Dump.. 210
ebXML ... 143
EDIFACT .. 142
Email .. 83, 204

Retrieving ... 83
Sending ... 83

email infrastructure ... 159
Encoding .. 42
Engine Advanced topics 202
Engine management ... 163
Examples JavaScript engine 131
Execution

background .. 171
batch .. 170

Exit
available .. 168
customer exit ... 167
customer supplied ... 167

Export... 182
Export automatic .. 166
Extension

Exit .. 167
FAX .. 204
fields .. 181
File access ... 56
Flash .. 72
Follow up computation...................................... 44
Forwarding

notifications ... 159
Frameworks ... 143
FTP ... 58
Functions ... 143
Graphical User Interface 176
Graphical view.. 180, 181

colors ... 204
upper limit .. 203

GUI
colors ... 176
page size.. 176
session ... 176

Health check .. 163
hexadecimal ... 45
High availability

mode II ... 199
mode III (unshared)...................................... 199

High availability
mode I ... 199

HTML .. 169
HTTP .. 50, 142

script ... 115
HTTP status 500 ... 144
HTTP-S .. 75, 206
IBM ... 81, 82
Import .. 182
Included Objects ... 41
Installation .. 186, 187
Instance

duplicating .. 202
multiple ... 202

internal tables
R/3 function call ... 80

internet file system .. 68
IP address 186, 187, 188, 189, 190, 192
Java .. 155
Java script .. 123, 209
JDBC .. 208
jmonapi.jar ... 158
JMS ... 81
JSDK ... 195, 201
LDAP ... 61
library .. 208
Limits .. 166
linkage ... 45
links ... 181
log .. 183

messages ... 204
logging in .. 16
login .. 16
logon ... 162
Mail ... 204
MailHost... 208
MailHost’.. 153
Master console .. 93
Master user... 205
Message services ... 81
Messages.. 165, 166
mib .. 57
MIME ... 150
Monitor ... 163, 205
Month wise

report .. 89
MQseries .. 81, 82
MS SQL server .. 59
Navigation .. 177

graphical reporting .. 87
reporting ... 85

Network interface ... 78
NFS ... 56
Non-HTML ... 50
Notification... 152, 182

 SPECTO manuals INDEX

SPECTO - 219 - NLS

Backup .. 160
email .. 153
fax .. 153
HP OpenView ... 156
interval .. 152
java class ... 154
nativ command .. 154
remote ... 173
SAP R/3 ... 155
SAP R/3 CCMS .. 156
sms .. 153
SNMP ... 154
status ... 152
telephone .. 153

notifications
forwarding .. 159

NTP .. 166
object ‘AddressEntry’ 127
object ‘AttributesChain’ 127
object ‘AttributesURL 127
object ‘NotificationEntry’ 128
object ‘script’ ... 127
object ‘ThreadEntry’ .. 128
object hierarchy ... 123
Object hierarchy .. 177
ODBC ... 59, 208
off times ... 30
operating system

command .. 203
Operator messages ... 165
Oracle ... 59
Page ... 36
Page status computation 38
Parameter ... 29

Dynamic ... 37
external computation 37
fixed... 36
start up .. 196
with variables ... 37

Parameter URL ... 36
Password

incoming messages.. 207
initial .. 16

PDF .. 72, 91
period .. 30
Ping ... 54
point-to-point .. 81
Port ... 53, 54
port 80 .. 208
Port services... 149
Portal .. 96

problems
known ... 210

Problems .. 208
PROGRESS .. 81, 82
Properties .. 41, 82, 146
Proxy ... 73, 206
ProxyDefault ... 74
ProxyHost .. 74
ProxyPassword .. 74
ProxyPort ... 74
ProxySocksHost .. 74
ProxySocksPort ... 74
ProxyUserId .. 74
publish and subscribe ... 81
R/3

Notification .. 155
R/3 .. 80
R/3

command line interface 169
R/3 .. 206
Ramp mode ... 84, 206
reason ... 30
recorder ... 184, 185
Recovery

database .. 165
relational database ... 59
Remote

execution .. 169
notification ... 173

Rename
client .. 178

Reporting ... 179
built in ... 85
document ... 91
user defined .. 92

representation
graphical ... 180
textual ... 180

Restarting ... 198
rfc ... 158
RFC ... 80
Rights .. 161
RPC ... 143
Samba ... 56, 57
SAP ... 80

notification ... 155
SAP command line interface 169
SAP R/3 ... 156
SAP SAPDB .. 59
sapccmsr.exe .. 158

INDEX SPECTO manual

SPECTO - 220 - NLS

Scalable Vector Graphics (SVG) 72
Script .. 112, 123
script based access .. 69
scripting engine ... 123
Secure communication 75
Secure socket layer .. 75
Service level agreements 97
Session .. 48

Cookies ... 48
Id ... 48, 49
tutorial ... 214

Session id .. 29, 35
SLA

comments ... 99
contract generation 103
customizing .. 97
definition .. 98
enabling .. 97
generation of chain documentation104, 107,

108, 109, 111
list of SLAs ... 99
overview ... 97
report enhancing ... 100
working with .. 99

SMB .. 56
SMTP ... 13, 142
SNAccount .. 172
SNMasterNode ... 172
SNMP ... 57
SNPeriod .. 172
SNThisNode .. 172
SOAP ... 62, 143, 150

Apache .. 62
forwarding email ... 159
Generic ... 67
JAXM/SAAJ .. 63

SOAP server ... 148, 159
SoapInEnabled .. 148
SoapInScript .. 148
socket .. 208
Socket .. 51, 52, 53
Socket services... 149
socks ... 206
sonicMQ... 81, 82
SOX .. 142
Special characters .. 45
SPECTO

configuration .. 203
starting .. 195
stopping .. 198

SPECTO NET ... 172, 207

SPECTO objects .. 124
SQL ... 59
SSH ... 55
SSL .. 206
Starting ... 23, 179
Startup

parameter... 196, 198
Statistics .. 163
Status

technical .. 183
stopping .. 23
Stopping ... 179
Summary reports ... 89

Month ... 89
week .. 89

SVG ... 72, 89, 207
Tabular view .. 180
TCP ... 149
TCP/IP .. 13
Telnet .. 55
termination... 195
text .. 45
Text area linkage ... 45
Time Base / NTP ... 166
Timeout .. 29, 210
Transfers .. 143
Troubleshooting.. 208
Tutorial ... 211
UDDI ... 150
UDP .. 149
UNICODE .. 142
UNIX

installation .. 186
Upgrade

in a HA environment 200
URL .. 36

structure .. 14
user

master ... 205
User id .. 16
User interface .. 20
User management 161, 182

Enhanced ... 161
Standard .. 161

userAgent ... 42
Variable

currURL ... 37
global ... 181
in parameters ... 37
name .. 37
page status .. 39

 SPECTO manuals INDEX

SPECTO - 221 - NLS

password ... 37
script.. 112
username .. 37
value .. 37
within URL .. 36

Verticals .. 143
Web server .. 13, 207

starting .. 195
stopping .. 201

web service ... 62
Web-dav ... 68
Windows NT

installation .. 186
WSDL ... 150
xCBL .. 143, 145
XDR ... 142
XML .. 13, 142, 150

Import/Export .. 182
repository ... 143
schema .. 142

XML server .. 147
XMLInEnabled ... 147
XMLInScript ... 147

